It would be really helpful if someone could help me understand this error and what do I do to fix it? I cannot change my data.
X = train[['id', 'listing_type', 'floor', 'latitude', 'longitude',
'beds', 'baths','total_rooms','square_feet','group','grades']]
Y = test['price']
n = pd.get_dummies(train.group)
Below is how the training data looks like:
id listing_type floor latitude longitude beds baths total_rooms square_feet grades high_price_high_freq high_price_low_freq low_price
265183 10 4 40.756224 -73.962506 1 1 3 790 2 1 0 0 0
270356 10 7 40.778010 -73.962547 5 5 9 4825 2 1 0 0
176718 10 25 40.764955 -73.963483 2 2 4 1645 2 1 0 0
234589 10 5 40.741448 -73.994216 3 3 5 2989 2 1 0 0
270372 10 5 40.837000 -73.947787 1 1 3 1045 2 0 0 1
The error code is:
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=0)
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
error message:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-479-ca78b7b5f096> in <module>()
1 from sklearn.cross_validation import train_test_split
----> 2 X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=0)
3 from sklearn.linear_model import LinearRegression
4 regressor = LinearRegression()
5 regressor.fit(X_train, y_train)
~\Anaconda3\lib\site-packages\sklearn\cross_validation.py in train_test_split(*arrays, **options)
2057 if test_size is None and train_size is None:
2058 test_size = 0.25
-> 2059 arrays = indexable(*arrays)
2060 if stratify is not None:
2061 cv = StratifiedShuffleSplit(stratify, test_size=test_size,
~\Anaconda3\lib\site-packages\sklearn\utils\validation.py in indexable(*iterables)
227 else:
228 result.append(np.array(X))
--> 229 check_consistent_length(*result)
230 return result
231
~\Anaconda3\lib\site-packages\sklearn\utils\validation.py in check_consistent_length(*arrays)
202 if len(uniques) > 1:
203 raise ValueError("Found input variables with inconsistent numbers of"
--> 204 " samples: %r" % [int(l) for l in lengths])
205
206
ValueError: Found input variables with inconsistent numbers of samples: [2750, 1095]
Y = test['price']
should probably be Y = train['price']
(or whatever is the name of the feature).
The exception is raised because your X and Y have different number of samples (rows) and train_test_split
doesn't like this.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With