Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

ValueError: endog and exog matrices are different sizes - how to drop data in specific columns only?

I'm trying to run a multi-variable regression and getting the error:

"ValueError: endog and exog matrices are different sizes"

My code snippet is below:

df_raw = pd.DataFrame(data=df_raw)

y = (df_raw['daily pct return']).astype(float)
x1 = (df_raw['Excess daily return']).astype(float)
x2 = (df_raw['Excess weekly return']).astype(float)
x3 = (df_raw['Excess monthly return']).astype(float)
x4 = (df_raw['Trading vol / mkt cap']).astype(float)
x5 = (df_raw['Std dev']).astype(float)
x6 = (df_raw['Residual risk']).astype(float)

y = y.replace([np.inf, -np.inf],np.nan).dropna()

print(y.shape)
print(x1.shape)
print(x2.shape)
print(x3.shape)
print(x4.shape)
print(x5.shape)
print(x6.shape)


df_raw.to_csv('Raw_final.csv', header=True)

result = smf.OLS(exog=y, endog=[x1, x2, x3, x4, x5, x6]).fit()
print(result.params)
print(result.summary())

As you can see from my code, I am checking the 'shape' of each variable. I get the following output which indicates the reason for the error is that the y variable has only 48392 values whereas all the others have 48393:

(48392,) (48393,) (48393,) (48393,) (48393,) (48393,) (48393,)

My dataframe looks something like the following:

  daily pct return | Excess daily return | weekly pct return | index weekly pct return | Excess weekly return | monthly pct return | index monthly pct return | Excess monthly return | Trading vol / mkt cap |   Std dev   
 ------------------|---------------------|-------------------|-------------------------|----------------------|--------------------|--------------------------|-----------------------|-----------------------|------------- 
                   |                     |                   |                         |                      |                    |                          |                       |           0.207582827 |             
       0.262658228 |         0.322397801 |                   |                         |                      |                    |                          |                       |           0.285585677 |             
       0.072681704 |         0.126445534 |                   |                         |                      |                    |                          |                       |           0.272920624 |             
       0.135514019 |         0.068778682 |                   |                         |                      |                    |                          |                       |           0.213149083 |             
      -0.115226337 |        -0.173681889 |                   |                         |                      |                    |                          |                       |           0.155653699 |             
      -0.165116279 |        -0.176569405 |                   |                         |                      |                    |                          |                       |           0.033925024 |             
       0.125348189 |         0.079889239 |                   |                         |                      |                    |                          |                       |           0.030968484 | 0.544133212 
       0.022277228 |        -0.044949678 |                   |                         |                      |                    |                          |                       |           0.020735381 | 0.385659608 
       0.150121065 |         0.102119782 |                   |                         |                      |                    |                          |                       |           0.063563881 | 0.430868447 
       0.336842105 |         0.333590483 |                   |                         |                      |                    |                          |                       |           0.210193049 | 0.893734807 
       0.011023622 |        -0.011860658 |       0.320987654 |            -0.657089012 |          0.978076666 |                    |                          |                       |           0.100468109 | 1.137976483 
        0.37694704 |         0.308505907 |                   |                         |                      |                    |                          |                       |           0.135828281 | 1.867394416 

Does anyone have an elegant solution to align the sizes of the matrices so I no longer receive this error? I think I need to drop the first row of values APART from the y variable ('daily pct return') but I'm uncertain how I can achieve this?

Thanks in advance!!

like image 958
Talkar81 Avatar asked Dec 22 '25 08:12

Talkar81


1 Answers

Finally got to the problem! There were three issues:

1) The y variable was of size 48392 whereas the other 6 variables were all of size 48393. To fix this I included the following line of code to drop the 1st row:

df_raw = df_raw.drop([0])

2) My dataframe had lots of empty cells. You can't perform a regression unless every cell has a value in it. So I included some code to replace all infs and empty cells with NaN and then fill all NaNs with a 0 value. Code snippet:

df_raw ['daily pct return']= df_raw ['daily pct return'].replace([np.inf, -np.inf],np.nan)
df_raw = df_raw.replace(r'\s+', np.nan, regex=True).replace('', np.nan)
df_raw.fillna(value=0, axis=1,inplace=True)

3) The way I'd written the multi-regression formula was wrong. I corrected it as follows:

result = smf.ols(formula='y ~ x1 + x2 + x3 + x4 + x5 + x6', data=df_raw).fit()

So in summary, my updated code is now as follows:

df_raw = pd.DataFrame(data=df_raw)
df_raw = df_raw.drop([0])
df_raw ['daily pct return']= df_raw ['daily pct return'].replace([np.inf, -np.inf],np.nan)
df_raw = df_raw.replace(r'\s+', np.nan, regex=True).replace('', np.nan)
df_raw.fillna(value=0, axis=1,inplace=True)
df_raw.to_csv('Raw_final.csv', header=True)


# Define variables for regression
y = (df_raw['daily pct return']).astype(float)
x1 = (df_raw['Excess daily return']).astype(float)
x2 = (df_raw['Excess weekly return']).astype(float)
x3 = (df_raw['Excess monthly return']).astype(float)
x4 = (df_raw['Trading vol / mkt cap']).astype(float)
x5 = (df_raw['Std dev']).astype(float)
x6 = (df_raw['Residual risk']).astype(float)

# Check shape of variables to confirm they are of the same size
print(y.shape)
print(x1.shape)
print(x2.shape)
print(x3.shape)
print(x4.shape)
print(x5.shape)
print(x6.shape)

# Perform regression
result = smf.ols(formula='y ~ x1 + x2 + x3 + x4 + x5 + x6', data=df_raw).fit()
print(result.params)
print(result.summary())
like image 173
Talkar81 Avatar answered Dec 23 '25 23:12

Talkar81



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!