I'm tryin to create a multi-class multi-label confusion matrix. I started out by making a simple code to test the waters which is working perfectly!
import matplotlib
matplotlib.use('Agg')
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import numpy as np
y_true = np.array([[0,0,1], [1,1,0],[0,1,0], [0,0,1]])
y_pred = np.array([[3.11640739e-01, 7.03224633e-03, 5.24131523e-04], [1,0,1],[0,0,0],[0,1,0]])
labels = ["A", "B", "C"]
conf_mat_dict={}
for label_col in range(len(labels)):
y_true_label = y_true[:, label_col]
y_pred_label = y_pred[:, label_col].astype(int)
print(len(y_pred_label))
print(y_pred_label)
conf_mat_dict[labels[label_col]] = confusion_matrix(y_pred=y_pred_label, y_true=y_true_label)
for label, matrix in conf_mat_dict.items():
print("Confusion matrix for label {}:".format(label))
print(matrix)
Now I am trying to implement this code into my classifier. But I am getting the error:
Traceback (most recent call last):
File "module/xvisionkeras.py", line 137, in <module>
conf_mat_dict[all_labels[label_col]] = confusion_matrix(y_pred=y_pred_label, y_true=y_true_label)
File "/home/.local/lib/python3.6/site-packages/sklearn/metrics/classification.py", line 253, in confusion_matrix
y_type, y_true, y_pred = _check_targets(y_true, y_pred)
File "/home/.local/lib/python3.6/site-packages/sklearn/metrics/classification.py", line 81, in _check_targets
"and {1} targets".format(type_true, type_pred))
ValueError: Classification metrics can't handle a mix of unknown and binary targets
This is what my y_true and y_pred look like from my classifier:
y_true = [[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0]
[1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0]]
y_pred = [[3.11640739e-01 7.03224633e-03 5.24131523e-04 3.86616620e-07
1.76620641e-04 2.04237878e-07 1.33097637e-02 9.73195732e-02
4.40102362e-04 1.43901054e-02 1.97768782e-06 3.82719515e-03
1.00047495e-02 2.02647328e-07]
[9.50563997e-02 3.03714332e-04 2.36625488e-06 9.52693328e-13
7.04080634e-08 2.23670063e-12 4.18162963e-04 8.28180760e-02
3.15815419e-06 7.02972582e-04 8.19261742e-11 1.01527738e-04
7.73170555e-04 1.85218228e-13]
[2.22699329e-01 2.33753794e-03 9.19468803e-05 7.17655990e-10
3.76326443e-06 2.58434874e-09 3.70667153e-03 1.12193748e-01
1.60316195e-04 3.16509278e-03 1.77856236e-08 7.23963138e-04
5.58568537e-03 3.64327679e-10]
[2.01257914e-01 2.55549047e-03 8.14868326e-05 8.32152924e-09
2.27710298e-05 5.02339681e-09 6.01076195e-03 6.39715046e-02
4.62430944e-05 8.06804933e-03 8.95162486e-08 1.28999283e-03
2.87817954e-03 2.70706768e-09]
[1.99281245e-01 5.05847216e-04 4.23961183e-06 6.71859304e-11
8.09664698e-07 4.37779007e-10 1.80601899e-03 2.89123088e-01
6.22663310e-06 9.77680553e-04 3.53975094e-09 2.74123857e-04
3.29167116e-03 3.53774961e-11]]
Could someone point out to me what I am doing wrong? I have been stuck on this problem for ages!
You are trying to compare integer and non-integer values.
(1 == 0.99)
would never match until you round the non integer value.
y_true, y_pred = [0, 1], [0.7, 0.3]
confusion_matrix(y_true, y_pred)
>> ValueError: Classification metrics can't handle a mix of multilabel-indicator and continuous-multioutput targets
Rounding y_pred
would make the job.
But, I don't think scikit-learn
supports multiclass-multilabel confusion matrices.
You will get a
>> ValueError: multilabel-indicator is not supported
You can however compute other metrics, such as accuracy score
(the higher the better) or the hamming loss
(the lower the better)
y_true = np.random.choice(2, (5, 14), p=[0.7, 0.3])
y_pred_round = np.random.choice(2, (5, 14), p=[0.7, 0.3])
from sklearn.metrics import accuracy_score, hamming_loss
# Accuracy Score
accuracy_score(y_true, y_pred_round, normalize=True, sample_weight=None)
((y_pred_round == y_true).all(axis=1).sum() / y_pred_round.shape[0])
# Hamming Loss
hamming_loss(y_true, y_pred_round)
scores = (y_pred_round != y_true).sum(axis=1)
numerator = scores.sum()
denominator = ((scores != 0).sum() * y_true.shape[1])
hl = (numerator / denominator)
What else can you do with (y_pred_round != y_true)
or (y_pred_round == y_true)
? Summing them (.sum(axis=1)
and .sum(axis=0)
), rearange, divide, define other metrics
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With