I have the following df:
Timestamp                            A      B      C     ...     
2014-11-09 00:00:00                     NaN     1      NaN   NaN      
2014-11-09 00:00:00                      2     NaN     NaN   NaN             
2014-11-09 00:00:00                     NaN    NaN     3     NaN   
2014-11-09 08:24:00                     NaN    NaN     1     NaN         
2014-11-09 08:24:00                     105    NaN     NaN   NaN           
2014-11-09 09:19:00                     NaN    NaN     23    NaN          
And I would like to make the following:
Timestamp                            A      B      C     ...     
2014-11-09 00:00:00                  2      1      3     NaN      
2014-11-09 00:01:00                  NaN    NaN    NaN   NaN
2014-11-09 00:02:00                  NaN    NaN    NaN   NaN
...                                  NaN    NaN    NaN   NaN
2014-11-09 08:23:00                  NaN    NaN    NaN   NaN
2014-11-09 08:24:00                  105    NaN     1    NaN         
2014-11-09 08:25:00                  NaN    NaN     NaN  NaN     
2014-11-09 08:26:00                  NaN    NaN     NaN  NaN
2014-11-09 08:27:00                  NaN    NaN     NaN  NaN      
...                                  NaN    NaN     NaN  NaN      
2014-11-09 09:18:00                  NaN    NaN     NaN  NaN  
2014-11-09 09:19:00                  NaN    NaN     23   NaN      
That is: I would like to merge the columns with the same Timestamp (I have 17 columns), resample at 1 min granularity and for those column with no values I would like to have NaN.
I started in the following ways:
df.groupby('Timestamp').sum()
and
df = df.resample('1Min', how='max')
but I obtained the following error:
ValueError: cannot reindex from a duplicate axis
How can I solve this problem? I'm just learning Python so I don't have experience at all.
Thank you!
Assumed that you have your Timestamp as index to begin with, you need to do the resample first, and reset_index before doing a groupby, here's the working sample:
import pandas as pd
df
                       A   B   C  ...
Timestamp                            
2014-11-09 00:00:00  NaN   1 NaN  NaN
2014-11-09 00:00:00    2 NaN NaN  NaN
2014-11-09 00:00:00  NaN NaN   3  NaN
2014-11-09 08:24:00  NaN NaN   1  NaN
2014-11-09 08:24:00  105 NaN NaN  NaN
2014-11-09 09:19:00  NaN NaN  23  NaN
df.resample('1Min', how='max').reset_index().groupby('Timestamp').sum()
                      A   B   C  ...
Timestamp                           
2014-11-09 00:00:00   2   1   3  NaN
2014-11-09 00:01:00 NaN NaN NaN  NaN
2014-11-09 00:02:00 NaN NaN NaN  NaN
2014-11-09 00:03:00 NaN NaN NaN  NaN
2014-11-09 00:04:00 NaN NaN NaN  NaN
...
2014-11-09 09:17:00 NaN NaN NaN  NaN
2014-11-09 09:18:00 NaN NaN NaN  NaN
2014-11-09 09:19:00 NaN NaN  23  NaN
Hope this helps.
As said in comment, your 'Timestamp' isn't datetime and probably as string so you cannot resample by DatetimeIndex, just reset_index and convert it something like this:
df = df.reset_index()
df['ts'] = pd.to_datetime(df['Timestamp'])
# 'ts' is now datetime of 'Timestamp', you just need to set it to index
df = df.set_index('ts')
...
Now just run the previous code again but replace 'Timestamp' with 'ts' and you should be OK.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With