Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

value toDF is not a member of org.apache.spark.rdd.RDD

Exception :

val people = sc.textFile("resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF() value toDF is not a member of org.apache.spark.rdd.RDD[Person] 

Here is TestApp.scala file:

package main.scala  import org.apache.spark.SparkContext import org.apache.spark.SparkContext._ import org.apache.spark.SparkConf   case class Record1(k: Int, v: String)   object RDDToDataFramesWithCaseClasses {      def main(args: Array[String]) {         val conf = new SparkConf().setAppName("Simple Spark SQL Application With RDD To DF")          // sc is an existing SparkContext.         val sc = new SparkContext(conf)          val sqlContext = new SQLContext(sc)          // this is used to implicitly convert an RDD to a DataFrame.         import sqlContext.implicits._          // Define the schema using a case class.         // Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,package main.scala 

And TestApp.scala

import org.apache.spark.SparkContext     import org.apache.spark.SparkContext._ import org.apache.spark.SparkConf   case class Record1(k: Int, v: String)   object RDDToDataFramesWithCaseClasses {     def main(args: Array[String]) {         val conf = new SparkConf().setAppName("RDD To DF")          // sc is an existing SparkContext.         // you can use custom classes that implement the Product interface.         case class Person(name: String, age: Int)          // Create an RDD of Person objects and register it as a table.         val people = sc.textFile("resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()          people.registerTempTable("people")          // SQL statements can be run by using the sql methods provided by sqlContext.         val teenagers = sqlContext.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")          // The results of SQL queries are DataFrames and support all the normal RDD operations.         // The columns of a row in the result can be accessed by field index:         teenagers.map(t => "Name: " + t(0)).collect().foreach(println)          // or by field name:         teenagers.map(t => "Name: " + t.getAs[String]("name")).collect().foreach(println)          // row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]          teenagers.map(_.getValuesMap[Any](List("name", "age"))).collect().foreach(println)          // Map("name" -> "Justin", "age" -> 19)      } } 

And SBT File

name := "SparkScalaRDBMS" version := "1.0" scalaVersion := "2.11.7" libraryDependencies += "org.apache.spark" %% "spark-core" % "1.5.1" libraryDependencies += "org.apache.spark" %% "spark-sql" % "1.5.1" 
like image 866
Ashish Aggarwal Avatar asked Nov 14 '15 03:11

Ashish Aggarwal


2 Answers

now i found the reason, you should define case class in the object and outof the main function. look at here

Ok, I finally fixed the issue. 2 things needed to be done:

  1. Import implicits: Note that this should be done only after an instance of org.apache.spark.sql.SQLContext is created. It should be written as:

    val sqlContext= new org.apache.spark.sql.SQLContext(sc)

    import sqlContext.implicits._

  2. Move case class outside of the method: case class, by use of which you define the schema of the DataFrame, should be defined outside of the method needing it. You can read more about it here: https://issues.scala-lang.org/browse/SI-6649

like image 68
deyong zhu Avatar answered Sep 21 '22 10:09

deyong zhu


In Spark 2, you need to import the implicits from the SparkSession:

val spark = SparkSession.builder().appName(appName).getOrCreate() import spark.implicits._ 

See the Spark documentation for more options when creating the SparkSession.

like image 20
Paul Avatar answered Sep 20 '22 10:09

Paul