Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Using YOLO or other image recognition techniques to identify all alphanumeric text present in images

I have multiple images diagram, all of which contains labels as alphanumeric characters instead of just the text label itself. I want my YOLO model to identify all the numbers & alphanumeric characters present in it.

How can I train my YOLO model to do the same. The dataset can be found here. https://drive.google.com/open?id=1iEkGcreFaBIJqUdAADDXJbUrSj99bvoi

For example : see the bounding boxes. I want YOLO to detect wherever the text are present. However currently its not necessary to identify the text inside it.

enter image description here

Also the same needs to be done for these type of images enter image description here enter image description here

The images can be downloaded here

This is what I have tried using opencv but it does not work for all the images in the dataset.

import cv2
import numpy as np
import pytesseract

pytesseract.pytesseract.tesseract_cmd = r"C:\Users\HPO2KOR\AppData\Local\Tesseract-OCR\tesseract.exe"

image = cv2.imread(r'C:\Users\HPO2KOR\Desktop\Work\venv\Patent\PARTICULATE DETECTOR\PD4.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
clean = thresh.copy()

horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (15,1))
detect_horizontal = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, horizontal_kernel, iterations=2)
cnts = cv2.findContours(detect_horizontal, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
    cv2.drawContours(clean, [c], -1, 0, 3)

vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,30))
detect_vertical = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, vertical_kernel, iterations=2)
cnts = cv2.findContours(detect_vertical, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
    cv2.drawContours(clean, [c], -1, 0, 3)

cnts = cv2.findContours(clean, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
    area = cv2.contourArea(c)
    if area < 100:
        cv2.drawContours(clean, [c], -1, 0, 3)
    elif area > 1000:
        cv2.drawContours(clean, [c], -1, 0, -1)
    peri = cv2.arcLength(c, True)
    approx = cv2.approxPolyDP(c, 0.02 * peri, True)
    x,y,w,h = cv2.boundingRect(c)
    if len(approx) == 4:
        cv2.rectangle(clean, (x, y), (x + w, y + h), 0, -1)

open_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2))
opening = cv2.morphologyEx(clean, cv2.MORPH_OPEN, open_kernel, iterations=2)
close_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,2))
close = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, close_kernel, iterations=4)
cnts = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
    x,y,w,h = cv2.boundingRect(c)
    area = cv2.contourArea(c)
    if area > 500:
        ROI = image[y:y+h, x:x+w]
        ROI = cv2.GaussianBlur(ROI, (3,3), 0)
        data = pytesseract.image_to_string(ROI, lang='eng',config='--psm 6')
        if data.isalnum():
            cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 2)
            print(data)

cv2.imwrite('image.png', image)
cv2.imwrite('clean.png', clean)
cv2.imwrite('close.png', close)
cv2.imwrite('opening.png', opening)
cv2.waitKey()

Is there any model or any opencv technique or some pre trained model that can do the same for me? I just need the bounding boxes around all the alphanumeric characters present in the images. After that I need to identify whats present in it. However the second part is not important currently.

like image 219
Pulkit Bhatnagar Avatar asked Feb 18 '20 07:02

Pulkit Bhatnagar


1 Answers

For convenience sake I'd like to add the package keras_ocr. It can easily be installed with pip, and is based on the CRAFT text detector, which is a bit newer than the EAST detector if I'm not wrong.

Next to the detection it already does some OCR too! The results are as seen below, see this as an alternative, maybe easier to implement, than the accepted answer.enter image description here

like image 107
Victor Sonck Avatar answered Nov 15 '22 23:11

Victor Sonck