I'm trying to modify the code shown far below, which works in Python 2.7.x, so it will also work unchanged in Python 3.x. However I'm encountering the following problem I can't solve in the first function, bin_to_float() as shown by the output below:
float_to_bin(0.000000): '0'
Traceback (most recent call last):
File "binary-to-a-float-number.py", line 36, in <module>
float = bin_to_float(binary)
File "binary-to-a-float-number.py", line 9, in bin_to_float
return struct.unpack('>d', bf)[0]
TypeError: a bytes-like object is required, not 'str'
I tried to fix that by adding a bf = bytes(bf) right before the call to struct.unpack(), but doing so produced its own TypeError:
TypeError: string argument without an encoding
So my questions are is it possible to fix this issue and achieve my goal? And if so, how? Preferably in a way that would work in both versions of Python.
Here's the code that works in Python 2:
import struct
def bin_to_float(b):
""" Convert binary string to a float. """
bf = int_to_bytes(int(b, 2), 8) # 8 bytes needed for IEEE 754 binary64
return struct.unpack('>d', bf)[0]
def int_to_bytes(n, minlen=0): # helper function
""" Int/long to byte string. """
nbits = n.bit_length() + (1 if n < 0 else 0) # plus one for any sign bit
nbytes = (nbits+7) // 8 # number of whole bytes
bytes = []
for _ in range(nbytes):
bytes.append(chr(n & 0xff))
n >>= 8
if minlen > 0 and len(bytes) < minlen: # zero pad?
bytes.extend((minlen-len(bytes)) * '0')
return ''.join(reversed(bytes)) # high bytes at beginning
# tests
def float_to_bin(f):
""" Convert a float into a binary string. """
ba = struct.pack('>d', f)
ba = bytearray(ba)
s = ''.join('{:08b}'.format(b) for b in ba)
s = s.lstrip('0') # strip leading zeros
return s if s else '0' # but leave at least one
for f in 0.0, 1.0, -14.0, 12.546, 3.141593:
binary = float_to_bin(f)
print('float_to_bin(%f): %r' % (f, binary))
float = bin_to_float(binary)
print('bin_to_float(%r): %f' % (binary, float))
print('')
To make portable code that works with bytes in both Python 2 and 3 using libraries that literally use the different data types between the two, you need to explicitly declare them using the appropriate literal mark for every string (or add from __future__ import unicode_literals to top of every module doing this). This step is to ensure your data types are correct internally in your code.
Secondly, make the decision to support Python 3 going forward, with fallbacks specific for Python 2. This means overriding str with unicode, and figure out methods/functions that do not return the same types in both Python versions should be modified and replaced to return the correct type (being the Python 3 version). Do note that bytes is a reserved word, too, so don't use that.
Putting this together, your code will look something like this:
import struct
import sys
if sys.version_info < (3, 0):
str = unicode
chr = unichr
def bin_to_float(b):
""" Convert binary string to a float. """
bf = int_to_bytes(int(b, 2), 8) # 8 bytes needed for IEEE 754 binary64
return struct.unpack(b'>d', bf)[0]
def int_to_bytes(n, minlen=0): # helper function
""" Int/long to byte string. """
nbits = n.bit_length() + (1 if n < 0 else 0) # plus one for any sign bit
nbytes = (nbits+7) // 8 # number of whole bytes
ba = bytearray(b'')
for _ in range(nbytes):
ba.append(n & 0xff)
n >>= 8
if minlen > 0 and len(ba) < minlen: # zero pad?
ba.extend((minlen-len(ba)) * b'0')
return u''.join(str(chr(b)) for b in reversed(ba)).encode('latin1') # high bytes at beginning
# tests
def float_to_bin(f):
""" Convert a float into a binary string. """
ba = struct.pack(b'>d', f)
ba = bytearray(ba)
s = u''.join(u'{:08b}'.format(b) for b in ba)
s = s.lstrip(u'0') # strip leading zeros
return (s if s else u'0').encode('latin1') # but leave at least one
for f in 0.0, 1.0, -14.0, 12.546, 3.141593:
binary = float_to_bin(f)
print(u'float_to_bin(%f): %r' % (f, binary))
float = bin_to_float(binary)
print(u'bin_to_float(%r): %f' % (binary, float))
print(u'')
I used the latin1 codec simply because that's what the byte mappings are originally defined, and it seems to work
$ python2 foo.py
float_to_bin(0.000000): '0'
bin_to_float('0'): 0.000000
float_to_bin(1.000000): '11111111110000000000000000000000000000000000000000000000000000'
bin_to_float('11111111110000000000000000000000000000000000000000000000000000'): 1.000000
float_to_bin(-14.000000): '1100000000101100000000000000000000000000000000000000000000000000'
bin_to_float('1100000000101100000000000000000000000000000000000000000000000000'): -14.000000
float_to_bin(12.546000): '100000000101001000101111000110101001111110111110011101101100100'
bin_to_float('100000000101001000101111000110101001111110111110011101101100100'): 12.546000
float_to_bin(3.141593): '100000000001001001000011111101110000010110000101011110101111111'
bin_to_float('100000000001001001000011111101110000010110000101011110101111111'): 3.141593
Again, but this time under Python 3.5)
$ python3 foo.py
float_to_bin(0.000000): b'0'
bin_to_float(b'0'): 0.000000
float_to_bin(1.000000): b'11111111110000000000000000000000000000000000000000000000000000'
bin_to_float(b'11111111110000000000000000000000000000000000000000000000000000'): 1.000000
float_to_bin(-14.000000): b'1100000000101100000000000000000000000000000000000000000000000000'
bin_to_float(b'1100000000101100000000000000000000000000000000000000000000000000'): -14.000000
float_to_bin(12.546000): b'100000000101001000101111000110101001111110111110011101101100100'
bin_to_float(b'100000000101001000101111000110101001111110111110011101101100100'): 12.546000
float_to_bin(3.141593): b'100000000001001001000011111101110000010110000101011110101111111'
bin_to_float(b'100000000001001001000011111101110000010110000101011110101111111'): 3.141593
It's a lot more work, but in Python3 you can more clearly see that the types are done as proper bytes. I also changed your bytes = [] to a bytearray to more clearly express what you were trying to do.
I had a different approach from @metatoaster's answer. I just modified int_to_bytes to use and return a bytearray:
def int_to_bytes(n, minlen=0): # helper function
""" Int/long to byte string. """
nbits = n.bit_length() + (1 if n < 0 else 0) # plus one for any sign bit
nbytes = (nbits+7) // 8 # number of whole bytes
b = bytearray()
for _ in range(nbytes):
b.append(n & 0xff)
n >>= 8
if minlen > 0 and len(b) < minlen: # zero pad?
b.extend([0] * (minlen-len(b)))
return bytearray(reversed(b)) # high bytes at beginning
This seems to work without any other modifications under both Python 2.7.11 and Python 3.5.1.
Note that I zero padded with 0 instead of '0'. I didn't do much testing, but surely that's what you meant?
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With