I am following the StatsModels example here to plot quantile regression lines. With only slight modification for my data, the example works great, producing this plot (note that I have modified the code to only plot the 0.05, 0.25, 0.5, 0.75, and 0.95 quantiles) :
However, I would like to plot the OLS fit and corresponding quantiles for a 2nd order polynomial fit (instead of linear). For example, here is the 2nd-order OLS line for the same data:
How can I modify the code in the linked example to produce non-linear quantiles?
Here is my relevant code modified from the linked example to produce the 1st plot:
d = {'temp': x, 'dens': y}
df = pd.DataFrame(data=d)
# Least Absolute Deviation
#
# The LAD model is a special case of quantile regression where q=0.5
mod = smf.quantreg('dens ~ temp', df)
res = mod.fit(q=.5)
print(res.summary())
# Prepare data for plotting
#
# For convenience, we place the quantile regression results in a Pandas DataFrame, and the OLS results in a dictionary.
quantiles = [.05, .25, .50, .75, .95]
def fit_model(q):
res = mod.fit(q=q)
return [q, res.params['Intercept'], res.params['temp']] + res.conf_int().ix['temp'].tolist()
models = [fit_model(x) for x in quantiles]
models = pd.DataFrame(models, columns=['q', 'a', 'b','lb','ub'])
ols = smf.ols('dens ~ temp', df).fit()
ols_ci = ols.conf_int().ix['temp'].tolist()
ols = dict(a = ols.params['Intercept'],
b = ols.params['temp'],
lb = ols_ci[0],
ub = ols_ci[1])
print(models)
print(ols)
x = np.arange(df.temp.min(), df.temp.max(), 50)
get_y = lambda a, b: a + b * x
for i in range(models.shape[0]):
y = get_y(models.a[i], models.b[i])
plt.plot(x, y, linestyle='dotted', color='grey')
y = get_y(ols['a'], ols['b'])
plt.plot(x, y, color='red', label='OLS')
plt.scatter(df.temp, df.dens, alpha=.2)
plt.xlim((-10, 40))
plt.ylim((0, 0.4))
plt.legend()
plt.xlabel('temp')
plt.ylabel('dens')
plt.show()
Quantile regression allows the analyst to drop the assumption that variables operate the same at the upper tails of the distribution as at the mean and to identify the factors that are important determinants of expenditures and quality of care for different subgroups of patients.
Statsmodel package is rich with descriptive statistics and provides number of models. Although simple linear line won’t fit our x data still let’s see how it performs. where b 0 is bias and b 1 is weight for simple Linear Regression equation. Statsmodel provides OLS model (ordinary Least Sqaures) for simple linear regression.
Fit a Second Order Polynomial to the given data. Curve fitting Polynomial Regression Let Y = a1 + a2x + a3x2 ( 2 nd order polynomial ). Here, m = 3 ( because to fit a curve we need at least 3 points ). Since the order of the polynomial is 2, therefore we will have 3 simultaneous equations as below.
Statsmodel package is rich with descriptive statistics and provides number of models. Although simple linear line won’t fit our x data still let’s see how it performs. where b 0 is bias and b 1 is weight for simple Linear Regression equation.
Particularly, sklearn doesnt provide statistical inference of model parameters such as ‘standard errors’. Statsmodel package is rich with descriptive statistics and provides number of models. Although simple linear line won’t fit our x data still let’s see how it performs. where b 0 is bias and b 1 is weight for simple Linear Regression equation.
After a day of looking into this, came up with a solution, so posting my own answer. Much credit to Josef Perktold at StatsModels for assistance.
Here is the relevant code and plot:
d = {'temp': x, 'dens': y}
df = pd.DataFrame(data=d)
x1 = pd.DataFrame({'temp': np.linspace(df.temp.min(), df.temp.max(), 200)})
poly_2 = smf.ols(formula='dens ~ 1 + temp + I(temp ** 2.0)', data=df).fit()
plt.plot(x, y, 'o', alpha=0.2)
plt.plot(x1.temp, poly_2.predict(x1), 'r-',
label='2nd order poly fit, $R^2$=%.2f' % poly_2.rsquared,
alpha=0.9)
plt.xlim((-10, 50))
plt.ylim((0, 0.25))
plt.xlabel('mean air temp')
plt.ylabel('density')
plt.legend(loc="upper left")
# with quantile regression
# Least Absolute Deviation
# The LAD model is a special case of quantile regression where q=0.5
mod = smf.quantreg('dens ~ temp + I(temp ** 2.0)', df)
res = mod.fit(q=.5)
print(res.summary())
# Quantile regression for 5 quantiles
quantiles = [.05, .25, .50, .75, .95]
# get all result instances in a list
res_all = [mod.fit(q=q) for q in quantiles]
res_ols = smf.ols('dens ~ temp + I(temp ** 2.0)', df).fit()
plt.figure()
# create x for prediction
x_p = np.linspace(df.temp.min(), df.temp.max(), 50)
df_p = pd.DataFrame({'temp': x_p})
for qm, res in zip(quantiles, res_all):
# get prediction for the model and plot
# here we use a dict which works the same way as the df in ols
plt.plot(x_p, res.predict({'temp': x_p}), linestyle='--', lw=1,
color='k', label='q=%.2F' % qm, zorder=2)
y_ols_predicted = res_ols.predict(df_p)
plt.plot(x_p, y_ols_predicted, color='red', zorder=1)
#plt.scatter(df.temp, df.dens, alpha=.2)
plt.plot(df.temp, df.dens, 'o', alpha=.2, zorder=0)
plt.xlim((-10, 50))
plt.ylim((0, 0.25))
#plt.legend(loc="upper center")
plt.xlabel('mean air temp')
plt.ylabel('density')
plt.title('')
plt.show()
red line: 2nd order polynomial fit
black dashed lines: 5th, 25th, 50th, 75th, 95th percentiles
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With