I've got some regressions results from running statsmodels.formula.api.ols
. Here's a toy example:
import pandas as pd
import numpy as np
import statsmodels.formula.api as smf
example_df = pd.DataFrame(np.random.randn(10, 3))
example_df.columns = ["a", "b", "c"]
fit = smf.ols('a ~ b', example_df).fit()
I'd like to apply the model to column c
, but a naive attempt to do so doesn't work:
fit.predict(example_df["c"])
Here's the exception I get:
PatsyError: Error evaluating factor: NameError: name 'b' is not defined
a ~ b
^
I can do something gross and create a new, temporary DataFrame
in which I rename the column of interest:
example_df2 = pd.DataFrame(example_df["c"])
example_df2.columns = ["b"]
fit.predict(example_df2)
Is there a cleaner way to do this? (short of switching to statsmodels.api
instead of statsmodels.formula.api
)
You can use a dictionary:
>>> fit.predict({"b": example_df["c"]})
array([ 0.84770672, -0.35968269, 1.19592387, -0.77487812, -0.98805215,
0.90584753, -0.15258093, 1.53721494, -0.26973941, 1.23996892])
or create a numpy array for the prediction, although that is much more complicated if there are categorical explanatory variables:
>>> fit.predict(sm.add_constant(example_df["c"].values), transform=False)
array([ 0.84770672, -0.35968269, 1.19592387, -0.77487812, -0.98805215,
0.90584753, -0.15258093, 1.53721494, -0.26973941, 1.23996892])
If you replace your fit
definition with this line:
fit = smf.ols('example_df.a ~ example_df.b', example_df).fit()
It should work.
fit.predict(example_df["c"])
array([-0.52664491, -0.53174346, -0.52172484, -0.52819856, -0.5253607 ,
-0.52391618, -0.52800043, -0.53350634, -0.52362988, -0.52520823])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With