I have a Pandas dataframe with the following format:
Frequency | Value
1 10 2.8
2 20 2.5
3 30 2.2
4 40 2.3
I want to use pandas.DataFrame.interpolate
in order to add a line at frequency 35 with a value interpolated linearly between frequencies 30 and 40.
In the user manual the example shows how to replace a Nan but not how to add values in between others (Pandas doc).
What would be the best way to proceed ?
Use concat() to Append Use pd. concat([new_row,df. loc[:]]). reset_index(drop=True) to append the row to the first position of the DataFrame as Index starts from zero.
Pandas DataFrame interpolate() Method The interpolate() method replaces the NULL values based on a specified method.
concat() by creating a new dataframe of all the rows that we need to add and then appending this dataframe to the original dataframe.
The values property is used to get a Numpy representation of the DataFrame. Only the values in the DataFrame will be returned, the axes labels will be removed. The values of the DataFrame. A DataFrame where all columns are the same type (e.g., int64) results in an array of the same type.
I think you need first add new value 35
to frequency
column by loc
, sort_values
and then interpolate
:
df.loc[-1, 'Frequency'] = 35
df = df.sort_values('Frequency').reset_index(drop=True)
print (df)
Frequency Value
0 10.0 2.8
1 20.0 2.5
2 30.0 2.2
3 35.0 NaN
4 40.0 2.3
df = df.interpolate()
print (df)
Frequency Value
0 10.0 2.80
1 20.0 2.50
2 30.0 2.20
3 35.0 2.25
4 40.0 2.30
Solution with Series
, thank you for idea Rutger Kassies.
DataFrame.squeeze
create Series
with one column DataFrame
.
s = df.set_index('Frequency').squeeze()
s.loc[35] = np.nan
s = s.sort_index().interpolate(method='index')
print (s)
Frequency
10 2.80
20 2.50
30 2.20
35 2.25
40 2.30
Name: Value, dtype: float64
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With