I would like to know how I use np.where
with 2D array
I have the following array:
arr1 = np.array([[ 3., 0.],
[ 3., 1.],
[ 3., 2.],
[ 3., 3.],
[ 3., 6.],
[ 3., 5.]])
I want to find this array:
arr2 = np.array([3.,0.])
But when I use np.where()
:
np.where(arr1 == arr2)
It returns:
(array([0, 0, 1, 2, 3, 4, 5]), array([0, 1, 0, 0, 0, 0, 0]))
I can't understand what it means. Can someone explain this for me?
You probably wanted all rows that are equal to your arr2
:
>>> np.where(np.all(arr1 == arr2, axis=1))
(array([0], dtype=int64),)
Which means that the first row (zeroth index) matched.
The problem with your approach is that numpy broadcasts the arrays (visualized with np.broadcast_arrays
):
>>> arr1_tmp, arr2_tmp = np.broadcast_arrays(arr1, arr2)
>>> arr2_tmp
array([[ 3., 0.],
[ 3., 0.],
[ 3., 0.],
[ 3., 0.],
[ 3., 0.],
[ 3., 0.]])
and then does elementwise-comparison:
>>> arr1 == arr2
array([[ True, True],
[ True, False],
[ True, False],
[ True, False],
[ True, False],
[ True, False]], dtype=bool)
and np.where
then gives you the coordinates of every True
:
>>> np.where(arr1 == arr2)
(array([0, 0, 1, 2, 3, 4, 5], dtype=int64),
array([0, 1, 0, 0, 0, 0, 0], dtype=int64))
# ^---- first match (0, 0)
# ^--- second match (0, 1)
# ^--- third match (1, 0)
# ...
Which means (0, 0)
(first row left item) is the first True
, then 0, 1
(first row right item), then 1, 0
(second row, left item), ....
If you use np.all
along the first axis you get all rows that are completly equal:
>>> np.all(arr1 == arr2, axis=1)
array([ True, False, False, False, False, False], dtype=bool)
Can be better visualized if one keeps the dimensions:
>>> np.all(arr1 == arr2, axis=1, keepdims=True)
array([[ True],
[False],
[False],
[False],
[False],
[False]], dtype=bool)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With