I am using pandas groupby and finding size for ex:
dd=df.groupby(['value','year','team']).size()
and it giving me output as:
value year team
0 2000 B 2
1 2000 A 2
2001 A 1
2 2001 B 1
3 2001 A 2
my question is what is level =0 and group_keys (given below )which is applying on grouped dataframe dd.
ddf3=dd.groupby(level=0,group_keys=False).apply(function).reset_index()
is (level=0) be 'value' column in grouped dataframe dd.
Please help me.
group_keys parameter in groupby comes handy during apply operations that creates an additional index column corresponding to the grouped columns[ group_keys=True ] and eliminates in the case[ group_keys=False ] especially during the case when trying to perform operations on individual columns.
The level in groupby() is used when you have multiple indices and you want to use only one index of the DataFrame. For example: df = pd.DataFrame([{'values':0,'year':2000,'team':'A'}, {'values':1,'year':2000,'team':'B'}, {'values':2,'year':2001,'team':'B'} ]) df = df.groupby(['values','year','team']).size() df.
Groupby is a very powerful pandas method. You can group by one column and count the values of another column per this column value using value_counts. Using groupby and value_counts we can count the number of activities each person did.
df.groupby(level=0)
It specifies the first index of the Dataframe
. When you have multiple indices and you need to groupby
only one index of those multiple indices of the dataframe we use it.
It means:
The level in groupby()
is used when you have multiple indices and you want to use only one index of the DataFrame.
For example:
df = pd.DataFrame([{'values':0,'year':2000,'team':'A'},
{'values':1,'year':2000,'team':'B'},
{'values':2,'year':2001,'team':'B'}
])
df = df.groupby(['values','year','team']).size()
df
Output:
values year team 0 2000 A 1 1 2000 B 1 2 2001 B 1
df = df.groupby(level=1).size()
df
Output:
year 2000 2 2001 1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With