I'm trying to decipher the explain API in the elasticsearch response. But a bit lost. It's a bit hard to follow for me. Any simple pointers or links that will explain the JSON more specifically? I have an understanding of TF, IDF and the cosine similarity in the VSM. But need some pointers on the JSON more specifically. Ideal would be if I can find an explanation of this JSON as a simple mathematical expression.
{
"_explanation": {
"value": 7.937373,
"description": "sum of:",
"details": [
{
"value": 2.4789724,
"description": "weight(FirstName:M80806 in 35) [PerFieldSimilarity], result of:",
"details": [
{
"value": 2.4789724,
"description": "score(doc=35,freq=1.0), product of:",
"details": [
{
"value": 0.37350902,
"description": "queryWeight, product of:",
"details": [
{
"value": 6.6369815,
"description": "idf(docFreq=720, maxDocs=202323)"
},
{
"value": 0.056276944,
"description": "queryNorm"
}
]
},
{
"value": 6.6369815,
"description": "fieldWeight in 35, product of:",
"details": [
{
"value": 1,
"description": "tf(freq=1.0), with freq of:",
"details": [
{
"value": 1,
"description": "termFreq=1.0"
}
]
},
{
"value": 6.6369815,
"description": "idf(docFreq=720, maxDocs=202323)"
},
{
"value": 1,
"description": "fieldNorm(doc=35)"
}
]
}
]
}
]
},
{
"value": 2.6825092,
"description": "weight(FirstName:M8086 in 35) [PerFieldSimilarity], result of:",
"details": [
{
"value": 2.6825092,
"description": "score(doc=35,freq=1.0), product of:",
"details": [
{
"value": 0.38854012,
"description": "queryWeight, product of:",
"details": [
{
"value": 6.9040728,
"description": "idf(docFreq=551, maxDocs=202323)"
},
{
"value": 0.056276944,
"description": "queryNorm"
}
]
},
{
"value": 6.9040728,
"description": "fieldWeight in 35, product of:",
"details": [
{
"value": 1,
"description": "tf(freq=1.0), with freq of:",
"details": [
{
"value": 1,
"description": "termFreq=1.0"
}
]
},
{
"value": 6.9040728,
"description": "idf(docFreq=551, maxDocs=202323)"
},
{
"value": 1,
"description": "fieldNorm(doc=35)"
}
]
}
]
}
]
},
{
"value": 2.7758915,
"description": "weight(FirstName:MHMT in 35) [PerFieldSimilarity], result of:",
"details": [
{
"value": 2.7758915,
"description": "score(doc=35,freq=1.0), product of:",
"details": [
{
"value": 0.3952451,
"description": "queryWeight, product of:",
"details": [
{
"value": 7.0232153,
"description": "idf(docFreq=489, maxDocs=202323)"
},
{
"value": 0.056276944,
"description": "queryNorm"
}
]
},
{
"value": 7.0232153,
"description": "fieldWeight in 35, product of:",
"details": [
{
"value": 1,
"description": "tf(freq=1.0), with freq of:",
"details": [
{
"value": 1,
"description": "termFreq=1.0"
}
]
},
{
"value": 7.0232153,
"description": "idf(docFreq=489, maxDocs=202323)"
},
{
"value": 1,
"description": "fieldNorm(doc=35)"
}
]
}
]
}
]
}
]
}
}
Using the Ruby gem elasticsearch-explain-response
, you will get a more readable 'explanation', e.g.
require 'elasticsearch'
client = Elasticsearch::Client.new
result = client.explain index: "megacorp", type: "employee", id: "1", q: "last_name:Smith"
puts Elasticsearch::API::Response::ExplainResponse.new(result["explanation"]).render
#=>
1.0 = 1.0(fieldWeight)
1.0 = 1.0(tf(1.0)) x 1.0(idf(2/3)) x 1.0(fieldNorm)
1.0 = 1.0(termFreq=1.0)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With