Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

UART ISR Tx Rx Architecture

Am I complicating things?

I'm architecting my code to talk from a 8051 micro to a peripheral device over UART. The peripheral responds to commands from the host and can only respond to one command at a time. It's a simple send and receive protocol. (tx1, rx1, tx2, rx2, tx3, rx3) Each TX message is terminated with a CR, each response is terminated with a >. I can't send a new message until I receive the response to the last one. Responses can also echo print the original TX message in the beginning if I enable that option (but this causes more traffic)

An example message would be:

  • TX: Hello
  • RX: World!>

Or with echo option...

  • TX: Hello
  • RX: Hello\rWorld!>

Option A A function such as getHello would consist of both the send and receive. A parallel ISR routine would gather the incoming bytes and throw a flag when the '>' character is received.

char* getHello(char * buf){
    sendMsg("Hello\r");
    delay(10ms); //wait a little bit

    //wait for receive to come in or timeout to occur
    while(!receiveFlag || !timeoutFlag);  //thrown by ISR
    receiveMsg(buf);
    //parse the message and do some other stuff
    return buf;
}

Pros:

  • Everything is contained within one function.
  • Easier to debug

Cons:

  • This function is blocking and could hang if the peripheral never responds so a timeout must be implemented.
  • Messages can't be received out of order, must be in series (ie, tx1, rx1, tx2, rx2, tx3, rx3)

Option B A parallel approach is taken. Two separate functions would created. one to send the message, and one that would vertexed upon receiving a response from the ISR.

void sendHello(){
    sendMsg("Hello\r");
    //do some other stuff if needed
}

char* receiveMsg(char * buf){
    //figure out from echo print what the tx message was
    //use a switch statement to decide which response parser to call
    switch(txMessage){ //pseudo code
    case "Hello":
        receiveMsg(buf);
        //parse the message and do some other stuff
        break;
    }
    return buf;
}

Pros:

  • Can handle parallel messages coming back out of order because it relies on the echo printing of the tx message to figure out how to parse it. (ie, tx1, tx2, tx3, rx1,rx2,rx3)

Cons:

  • quite difficult to debug
  • spawns multiple threads
  • lots of extra code
  • not worth it since messages will definitely come back in order

Right now, I'm doing Option B, but as I continue on with the project, I begin to feel like this is getting overly complex. I'm curious what you guys think.

Thanks!

like image 836
Jonathan Avatar asked Nov 22 '12 21:11

Jonathan


1 Answers

I tend to do this kind of stuff, though, Id tend to have a separate serial port "class" ( struct + functions ) and a protocol class that lives over the top of serial port. I used these all the time in my embedded systems. This gives you the best of both worlds, a blocking synchronous call and an async call so you can pseudo multitask.

typedef struct serial_port_s serial_port;
typedef void (*serial_on_recived_proc)(serial_port* p);
typedef struct serial_port_s{
    bool timeoutFlag;
    bool receiveFlag;
    void* context;
    serial_on_recived_proc response_handler;
};

void send_serial(serial_port* p, char* message)
{
    //SendMsg?
}
void receive_serial(serial_port* p, char* response)
{
    //receiveMsg?
}

bool has_data(serial_port* p)
{
    return p->receiveFlag;
}

bool has_timed_out(serial_port* p)
{
    return p->timeoutFlag;
}
bool is_serial_finished(serial_port* p)
{
    return has_data(p) || has_timed_out(p); 
}

bool serial_check(serial_port* p)
{
    if(is_serial_finished(p) && p->response_handler != NULL)
    {
       p->response_handler(p)
       p-> response_handler = NULL;
       return true;
    }
    return false;
}

void send(serial_port* p, char* message, char* response)
{
    p->response_handler=NULL;
    send_serial(p, message);
    while(!is_serial_finished(p));
    receive_serial(p, response);
}

void sendAsync(serial_port* p, char* message, serial_on_recived_proc handler, void* context)
{
    p->response_handler = handler;
    p->context = context;
    send_serial(p, message);
}

void pow_response(serial_port* p)
{
    // could pass a pointer to a struct, or anything depending on what you want to do
    char* r = (char*)p->context;  
    receive_serial(p, r);
    // do stuff with the pow response
}

typedef struct
{
   char text[100];       
   int x;
   bool has_result;
} bang_t;

void bang_parse(bang_t* bang)
{
   bang->x = atoi(bang->text);
}

void bang_response(serial_port* p)
{
    bang_t* bang = (bang_t*)p->context;  
    receive_serial(p, bang->text);
    bang_parse(bang);
    bang->has_result=true;
}

void myFunc();
{
    char response[100];
    char pow[100];
    bang_t bang1;
    bang_t bang2;
    serial_port p; //
    int state = 1;
    // whatever you need to do to set the serial port

    // sends and blocks till a response/timeout
    send(&p, "Hello", response);
    // do what you like with the response

    // alternately, lets do an async send...
    sendAsync(&p, "Pow", pow_response, pow);       

    while(true)
    {
        // non block check, will process the response when it arrives               
        if(serial_check(p))
            {
              // it has responded to something, we can send something else...

              // using a very simple state machine, work out what to send next.
              // in practice I'd use enum for states, and functions for managing state
              // transitions, but for this example I'm just using an int which
              // I just increment to move to the next state
              switch(state)
              {
              case 1: 
                 // bang1 is the context, and will receive the data
                 sendAsync(&p, "Bang1", bang_response, &bang1);
                 state++; 
                 break;
              case 2:
                 // now bang2 is the context and will get the data...
                 sendAsync(&p, "Bang2", bang_response, &bang2);
                 state++; 
                 break;
              default:
                 //nothing more to send....
                 break;
              }
            }
        // do other stuff you want to do in parallel
    }
};
like image 79
Keith Nicholas Avatar answered Nov 07 '22 04:11

Keith Nicholas