I wanted to convert the PIL Image object into a numpy array. I tried using the following codes it showing an error
TypeError Traceback (most recent call last) <ipython-input-133-0898103f22f0> in <module>()
1 image_path = 'test/28/image_05230.jpg'
----> 2 image = process_image(image_path)
3 imshow(image)
<ipython-input-129-e036faebfd31> in process_image(image_path)
24 # normalize
25 print(type(image))
---> 26 image_arr = np.array(image) / 255
27 mean = np.array([0.485, 0.456, 0.406])
28 std_dv = np.array( [0.229, 0.224, 0.225])
TypeError: unsupported operand type(s) for /: 'Image' and 'int'
from PIL import Image
image = Image.open(image_path)
image = np.asarray(image) / 255
I also tried with this code image = np.array(image) / 255 it's showing the same error. (code below)
from PIL import Image
image = Image.open(image_path)
image = np.array(image) / 255
This error occurs only when I used the above code in below function
def convert_pil_to_numpy_array(image_path):
# Load Image an open the image
from PIL import Image
image = Image.open(image_path)
width = image.size[0]
height = image.size[1]
if width > height:
image.thumbnail((500, 256))
else:
image.thumbnail((256, 500))
left_margin = (image.width - 224) / 2
lower_margin = (image.height - 224) / 2
upper_margin = lower_margin + 224
right_margin = left_margin + 224
image = image.crop((left_margin, upper_margin, right_margin, lower_margin))
# normalize
print(type(image))
image_arr = np.array(image) / 255
mean = np.array([0.485, 0.456, 0.406])
std_dv = np.array( [0.229, 0.224, 0.225])
image_arr = (image_arr - mean)/std_dv
return image_arr
In the function convert_pil_to_numpy_array()
, the image
variable used initially is different from the image
variable that stores the crop
ped Image
object.
from PIL import Image
image_path = "C:\\temp\\Capture.JPG"
image = Image.open(image_path)
print(type(image))
#Output
<class 'PIL.JpegImagePlugin.JpegImageFile'>
This is a JpegImageFile
object. If you look at the other image
variable that stores the cropped image and is later passed to np.array
, this variable is an object of the Image
class:
image = image.crop((left_margin, upper_margin, right_margin, lower_margin))
print(type(image))
#Output:
<class 'PIL.Image.Image'>
The problem lies in the tuple values passed to the crop()
function. With the margin values that you passed to crop
, the image could not be converted to an array and returned an Image
object again:
image_arr = np.array(image)
print(image_arr)
#Output:
<PIL.Image.Image image mode=RGB size=224x0 at 0x39E4F60>
As your image dimensions were different from mine, I used different values for the 4-tuple passed to crop()
and got an array:
image = image.crop((50,100,60,120))
image_arr = np.array(image)
#Output:
[[[-2.11790393 -2.03571429 -1.80444444]
[-2.11790393 -2.03571429 -1.80444444]
[-2.11790393 -2.03571429 -1.80444444]
[-2.11790393 -2.03571429 -1.80444444]
[-2.11790393 -2.03571429 -1.80444444]
[-2.11790393 -2.03571429 -1.80444444]
[-2.11790393 -2.03571429 -1.80444444]
[-2.11790393 -2.03571429 -1.80444444]
[-2.11790393 -2.03571429 -1.80444444]
[-2.11790393 -2.03571429 -1.80444444]]..etc
What you should do is, check the margin values and save the cropped image to file(jpg, png, etc.) and then convert to array. Note that I am not storing the saved image to any variable. :
image.crop((50, 60, 100, 120)).save("test.jpg")
image_arr = np.array(Image.open("test.jpg")) / 255
mean = np.array([0.485, 0.456, 0.406])
std_dv = np.array( [0.229, 0.224, 0.225])
image_arr = (image_arr - mean)/std_dv
print(image_arr)
#Output:
[[[-0.04580872 0.08263305 0.30448802]
[-0.91917116 -0.81022409 -0.58440087]
[ 0.81042898 0.95798319 1.17594771]
...
[ 2.19753404 2.37605042 2.58771242]
[-0.02868396 -0.19747899 0.13019608]
[-0.11430773 -0.28501401 0.04305011]]
....etc.
Now that you presented the real code you are actually using:
Image.open("path.jpg")
returns <class 'PIL.JpegImagePlugin.JpegImageFile'>
<class 'PIL.Image.Image'>
If you inspect your cropped image
, you can see it only has one dimension, the second is 0:
If you fix your code to:
def convert_pil_to_numpy_array(image_path):
# Load Image an open the image
from PIL import Image
image = Image.open(image_path)
width = image.size[0]
height = image.size[1]
image.thumbnail((500, 256) if (width > height) else (256, 500))
left_margin = (image.width - 224) / 2
upper_margin = (image.height - 224) / 2 # fixed
lower_margin = upper_margin + 224 # fixed
right_margin = left_margin + 224
# fixed and renamed so you do not overwrite image all the time - helps debugging
# now this has 2 dimensions that are non-zero
image_crop = image.crop((left_margin, upper_margin, right_margin, lower_margin))
# normalize
image_arr = np.asarray(image) / 255
mean = np.mean(image_arr)
std_dv = np.std( image_arr )
image_arr = (image_arr - mean)/std_dv
return image_crop
the code suddenly runs without errors.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With