I Was following a post on 'Training a transformer model for a chatbot with TensorFlow 2.0'. I have encountered an error on my local machine although the code seems to work fine in colab. Below is the code snippet.
def encoder_layer(units, d_model, num_heads, dropout, name="encoder_layer"):
inputs = tf.keras.Input(shape=(None, d_model), name="inputs")
padding_mask = tf.keras.Input(shape=(1, 1, None), name="padding_mask")
attention = MultiHeadAttention(
d_model, num_heads, name="attention")({
'query': inputs,
'key': inputs,
'value': inputs,
'mask': padding_mask
})
attention = tf.keras.layers.Dropout(rate=dropout)(attention)
attention = tf.keras.layers.LayerNormalization(
epsilon=1e-6)(inputs + attention)
outputs = tf.keras.layers.Dense(units=units, activation='relu')(attention)
outputs = tf.keras.layers.Dense(units=d_model)(outputs)
outputs = tf.keras.layers.Dropout(rate=dropout)(outputs)
outputs = tf.keras.layers.LayerNormalization(
epsilon=1e-6)(attention + outputs)
return tf.keras.Model(
inputs=[inputs, padding_mask], outputs=outputs, name=name)
I called above function with the following function call;
sample_encoder_layer = encoder_layer(
units=512,
d_model=128,
num_heads=4,
dropout=0.3,
name="sample_encoder_layer")
Below is the traceback of the error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py in _AssertCompatible(values, dtype)
323 try:
--> 324 fn(values)
325 except ValueError as e:
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py in _check_not_tensor(values)
275 def _check_not_tensor(values):
--> 276 _ = [_check_failed(v) for v in nest.flatten(values)
277 if isinstance(v, ops.Tensor)]
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py in <listcomp>(.0)
276 _ = [_check_failed(v) for v in nest.flatten(values)
--> 277 if isinstance(v, ops.Tensor)]
278 # pylint: enable=invalid-name
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py in _check_failed(v)
247 # it is safe to use here.
--> 248 raise ValueError(v)
249
ValueError: Tensor("attention_1/Identity:0", shape=(None, None, 128), dtype=float32)
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
<ipython-input-20-3fa05a9bbfda> in <module>
----> 1 sample_encoder_layer = encoder_layer(units=512, d_model=128, num_heads=4, dropout=0.3, name='sample_encoder_layer')
2
3 tf.keras.utils.plot_model(
4 sample_encoder_layer, to_file='encoder_layer.png', show_shapes=True)
<ipython-input-18-357ca53de1c0> in encoder_layer(units, d_model, num_heads, dropout, name)
10 'mask': padding_mask
11 })
---> 12 attention = tf.keras.layers.Dropout(rate=dropout)(attention)
13 attention = tf.keras.layers.LayerNormalization(
14 epsilon=1e-6)(inputs + attention)
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py in __call__(self, *args, **kwargs)
920 not base_layer_utils.is_in_eager_or_tf_function()):
921 with auto_control_deps.AutomaticControlDependencies() as acd:
--> 922 outputs = call_fn(cast_inputs, *args, **kwargs)
923 # Wrap Tensors in `outputs` in `tf.identity` to avoid
924 # circular dependencies.
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/keras/layers/core.py in call(self, inputs, training)
209 output = tf_utils.smart_cond(training,
210 dropped_inputs,
--> 211 lambda: array_ops.identity(inputs))
212 return output
213
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/keras/utils/tf_utils.py in smart_cond(pred, true_fn, false_fn, name)
63 pred, true_fn=true_fn, false_fn=false_fn, name=name)
64 return smart_module.smart_cond(
---> 65 pred, true_fn=true_fn, false_fn=false_fn, name=name)
66
67
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/smart_cond.py in smart_cond(pred, true_fn, false_fn, name)
57 else:
58 return control_flow_ops.cond(pred, true_fn=true_fn, false_fn=false_fn,
---> 59 name=name)
60
61
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py in new_func(*args, **kwargs)
505 'in a future version' if date is None else ('after %s' % date),
506 instructions)
--> 507 return func(*args, **kwargs)
508
509 doc = _add_deprecated_arg_notice_to_docstring(
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/ops/control_flow_ops.py in cond(pred, true_fn, false_fn, strict, name, fn1, fn2)
1175 if (util.EnableControlFlowV2(ops.get_default_graph()) and
1176 not context.executing_eagerly()):
-> 1177 return cond_v2.cond_v2(pred, true_fn, false_fn, name)
1178
1179 # We needed to make true_fn/false_fn keyword arguments for
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/ops/cond_v2.py in cond_v2(pred, true_fn, false_fn, name)
82 true_name, collections=ops.get_default_graph()._collections), # pylint: disable=protected-access
83 add_control_dependencies=add_control_dependencies,
---> 84 op_return_value=pred)
85 false_graph = func_graph_module.func_graph_from_py_func(
86 false_name,
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
979 _, original_func = tf_decorator.unwrap(python_func)
980
--> 981 func_outputs = python_func(*func_args, **func_kwargs)
982
983 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/keras/layers/core.py in dropped_inputs()
205 noise_shape=self._get_noise_shape(inputs),
206 seed=self.seed,
--> 207 rate=self.rate)
208
209 output = tf_utils.smart_cond(training,
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py in new_func(*args, **kwargs)
505 'in a future version' if date is None else ('after %s' % date),
506 instructions)
--> 507 return func(*args, **kwargs)
508
509 doc = _add_deprecated_arg_notice_to_docstring(
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/ops/nn_ops.py in dropout(x, keep_prob, noise_shape, seed, name, rate)
4341 raise ValueError("You must provide a rate to dropout.")
4342
-> 4343 return dropout_v2(x, rate, noise_shape=noise_shape, seed=seed, name=name)
4344
4345
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/ops/nn_ops.py in dropout_v2(x, rate, noise_shape, seed, name)
4422 raise ValueError("rate must be a scalar tensor or a float in the "
4423 "range [0, 1), got %g" % rate)
-> 4424 x = ops.convert_to_tensor(x, name="x")
4425 x_dtype = x.dtype
4426 if not x_dtype.is_floating:
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/ops.py in convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, dtype_hint, ctx, accepted_result_types)
1339
1340 if ret is None:
-> 1341 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
1342
1343 if ret is NotImplemented:
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py in _constant_tensor_conversion_function(v, dtype, name, as_ref)
319 as_ref=False):
320 _ = as_ref
--> 321 return constant(v, dtype=dtype, name=name)
322
323
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py in constant(value, dtype, shape, name)
260 """
261 return _constant_impl(value, dtype, shape, name, verify_shape=False,
--> 262 allow_broadcast=True)
263
264
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py in _constant_impl(value, dtype, shape, name, verify_shape, allow_broadcast)
298 tensor_util.make_tensor_proto(
299 value, dtype=dtype, shape=shape, verify_shape=verify_shape,
--> 300 allow_broadcast=allow_broadcast))
301 dtype_value = attr_value_pb2.AttrValue(type=tensor_value.tensor.dtype)
302 const_tensor = g._create_op_internal( # pylint: disable=protected-access
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py in make_tensor_proto(values, dtype, shape, verify_shape, allow_broadcast)
449 nparray = np.empty(shape, dtype=np_dt)
450 else:
--> 451 _AssertCompatible(values, dtype)
452 nparray = np.array(values, dtype=np_dt)
453 # check to them.
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py in _AssertCompatible(values, dtype)
326 [mismatch] = e.args
327 if dtype is None:
--> 328 raise TypeError("Expected any non-tensor type, got a tensor instead.")
329 else:
330 raise TypeError("Expected %s, got %s of type '%s' instead." %
TypeError: Expected any non-tensor type, got a tensor instead.
I had this error when I converted a function argument of int datatype to tf.constant . I resolved the issue in my case by undoing it. I faced this issue when I was converting TF1 codes to TF2.3.0 . Looking at your error trace I can see it's pointed to handling some constants in tf-chatbot. Kindly check how that constant is handled.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With