Import libraries and models,
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
import keras.backend as k
batch_size = 128
num_classes = 10
epochs = 12
Below the written code,
#Loss and Optimizer
optimizer = keras.optimizers.Adam()
loss = keras.losses.categorical_crossentropy()
Below the type error, which I badly faced and i can't make the solution,
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-8-f3fea941b382> in <module>()
1 #Loss and Optimizer
2 optimizer = keras.optimizers.Adam()
----> 3 loss = keras.losses.categorical_crossentropy()
/usr/local/lib/python3.6/dist-packages/tensorflow/python/util/dispatch.py in wrapper(*args, **kwargs)
199 """Call target, and fall back on dispatchers if there is a TypeError."""
200 try:
--> 201 return target(*args, **kwargs)
202 except (TypeError, ValueError):
203 # Note: convert_to_eager_tensor currently raises a ValueError, not a
TypeError: categorical_crossentropy() missing 2 required positional arguments: 'y_true' and 'y_pred'
Need help to solve this problem, please help me. Advanced thanks.
This is the correct implementation for getting a Categorical Crossentropy class object.
loss = keras.losses.CategoricalCrossentropy()
keras.losses.categorical_crossentropy
this is a function which requires 2 parameters.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With