I'd like to know how do the member types work in Scala, and how should I associate types.
One approach is to make the associated type a type parameter. The advantages of this approach is that I can prescribe the variance of the type, and I can be sure that a subtype doesn't change the type. The disadvantages are, that I cannot infer the type parameter from the type in a function.
The second approach is to make the associated type a member of the second type, which has the problem that I can't prescribe bounds on the subtypes' associated types and therefore, I can't use the type in function parameters (when x : X, X#T might not be in any relation with x.T)
A concrete example would be:
I have a trait for DFAs (could be without the type parameter)
trait DFA[S] { /* S is the type of the symbols in the alphabet */
trait State { def next(x : S); }
/* final type Sigma = S */
}
and I want to create a function for running this DFA over an input sequence, and I want
<% Seq[alphabet-type-of-the-dfa]
as input sequence typeI tried this:
def runDFA[S, D <: DFA[S], SQ <% Seq[S]](d : D)(seq : SQ) = ....
this works, except the type S is not inferred here, so I have to write the whole type parameter list on each call site.
def runDFA[D <: DFA[S] forSome { type S }, SQ <% Seq[D#Sigma]]( ... same as above
this didn't work (invalid circular reference to type D??? (what is it?))
I also deleted the type parameter, created an abstract type Sigma and tried binding that type in the concrete classes. runDFA would look like
def runDFA[D <: DFA, SQ <% Seq[D#Sigma]]( ... same as above
but this inevitably runs into problems like "type mismatch: expected dfa.Sigma
, got D#Sigma
"
Any ideas? Pointers?
Edit:
As the answers indicate there is no simple way of doing this, could somebody elaborate more on why is it impossible and what would have to be changed so it worked?
The reasons I want runDFA ro be a free function (not a method) is that I want other similar functions, like automaton minimization, regular language operations, NFA-to-DFA conversions, language factorization etc. and having all of this inside one class is just against almost any principle of OO design.
Language. Methods in Scala can be parameterized by type as well as value. The syntax is similar to that of generic classes. Type parameters are enclosed in square brackets, while value parameters are enclosed in parentheses.
Scala is a statically typed programming language. This means the compiler determines the type of a variable at compile time. Type declaration is a Scala feature that enables us to declare our own types.
You can use certain types (like Int or String ) using literals ( 1 or 2 for Int or "James" for String ). Type constructors are types that need other types to be built. List or Option won't be a fully qualified type unless you pass another type to them (i.e. List[Int] or Option[String] – mfirry.
Non-value types capture properties of identifiers that are not values. For example, a type constructor does not directly specify a type of values. However, when a type constructor is applied to the correct type arguments, it yields a first-order type, which may be a value type.
First off, you don't need the parameterisation SQ <% Seq[S]. Write the method parameter as Seq[S]. If SQ <% Seq[S] then any instance of it is implicitly convertable to Seq[S] (that's what <% means), so when passed as Seq[S] the compiler will automatically insert the conversion.
Additionally, what Jorge said about type parameters on D and making it a method on DFA hold. Because of the way inner classes work in Scala I would strongly advise putting runDFA on DFA. Until the path dependent typing stuff works, dealing with inner classes of some external class can be a bit of a pain.
So now you have
trait DFA[S]{
...
def runDFA(seq : Seq[S]) = ...
}
And runDFA is all of a sudden rather easy to infer type parameters for: It doesn't have any.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With