Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Type annotations for *args and **kwargs

People also ask

What is the type of * args?

The special syntax *args in function definitions in python is used to pass a variable number of arguments to a function. It is used to pass a non-key worded, variable-length argument list. The syntax is to use the symbol * to take in a variable number of arguments; by convention, it is often used with the word args.

What does * args and * Kwargs mean?

*args passes variable number of non-keyworded arguments and on which operation of the tuple can be performed. **kwargs passes variable number of keyword arguments dictionary to function on which operation of a dictionary can be performed.

What is a type annotation in Python?

Type annotations — also known as type signatures — are used to indicate the datatypes of variables and input/outputs of functions and methods. In many languages, datatypes are explicitly stated. In these languages, if you don't declare your datatype — the code will not run.

What is list from typing in Python?

List. Lists are used to store multiple items in a single variable. Lists are one of 4 built-in data types in Python used to store collections of data, the other 3 are Tuple, Set, and Dictionary, all with different qualities and usage.


For variable positional arguments (*args) and variable keyword arguments (**kw) you only need to specify the expected value for one such argument.

From the Arbitrary argument lists and default argument values section of the Type Hints PEP:

Arbitrary argument lists can as well be type annotated, so that the definition:

def foo(*args: str, **kwds: int): ...

is acceptable and it means that, e.g., all of the following represent function calls with valid types of arguments:

foo('a', 'b', 'c')
foo(x=1, y=2)
foo('', z=0)

So you'd want to specify your method like this:

def foo(*args: int):

However, if your function can only accept either one or two integer values, you should not use *args at all, use one explicit positional argument and a second keyword argument:

def foo(first: int, second: Optional[int] = None):

Now your function is actually limited to one or two arguments, and both must be integers if specified. *args always means 0 or more, and can't be limited by type hints to a more specific range.


The proper way to do this is using @overload

from typing import overload

@overload
def foo(arg1: int, arg2: int) -> int:
    ...

@overload
def foo(arg: int) -> int:
    ...

def foo(*args):
    try:
        i, j = args
        return i + j
    except ValueError:
        assert len(args) == 1
        i = args[0]
        return i

print(foo(1))
print(foo(1, 2))

Note that you do not add @overload or type annotations to the actual implementation, which must come last.

You'll need a newish version of both typing and mypy to get support for @overload outside of stub files.

You can also use this to vary the returned result in a way that makes explicit which argument types correspond with which return type. e.g.:

from typing import Tuple, overload

@overload
def foo(arg1: int, arg2: int) -> Tuple[int, int]:
    ...

@overload
def foo(arg: int) -> int:
    ...

def foo(*args):
    try:
        i, j = args
        return j, i
    except ValueError:
        assert len(args) == 1
        i = args[0]
        return i

print(foo(1))
print(foo(1, 2))

As a short addition to the previous answer, if you're trying to use mypy on Python 2 files and need to use comments to add types instead of annotations, you need to prefix the types for args and kwargs with * and ** respectively:

def foo(param, *args, **kwargs):
    # type: (bool, *str, **int) -> None
    pass

This is treated by mypy as being the same as the below, Python 3.5 version of foo:

def foo(param: bool, *args: str, **kwargs: int) -> None:
    pass

Not really supported yet

While you can annotate variadic arguments with a type, I don't find it very useful because it assumes that all arguments are of the same type.

The proper type annotation of *args and **kwargs that allows specifying each variadic argument separately is not supported by mypy yet. There is a proposal for adding an Expand helper on mypy_extensions module, it would work like this:

class Options(TypedDict):
    timeout: int
    alternative: str
    on_error: Callable[[int], None]
    on_timeout: Callable[[], None]
    ...

def fun(x: int, *, **options: Expand[Options]) -> None:
    ...

The GitHub issue was opened on January 2018 but it's still not closed. Note that while the issue is about **kwargs, the Expand syntax will likely be used for *args as well.


In some cases the content of **kwargs can be a variety of types.

This seems to work for me:

from typing import Any

def testfunc(**kwargs: Any) -> None:
    print(kwargs)

or

from typing import Any, Optional

def testfunc(**kwargs: Optional[Any]) -> None:
    print(kwargs)

In the case where you feel the need to constrain the types in **kwargs I suggest creating a struct-like object and add the typing there. This can be done with dataclasses, or pydantic.

from dataclasses import dataclass

@dataclass
class MyTypedKwargs:
   expected_variable: str
   other_expected_variable: int


def testfunc(expectedargs: MyTypedKwargs) -> None:
    pass