I'm trying to create a program, that uses sympy to take a set of variables and evaluate a symbolic logic expression over the domain of those variables. The problem is that I cannot get python to evaluate the expression after it spits out the truth table.
Here's the code:
from sympy import *
from sympy.abc import p, q, r
def get_vars():
vars = []
print "Please enter the number of variables to use in the equation"
numVars = int(raw_input())
print "please enter each of the variables on a newline"
for i in xrange(numVars):
vars.append(raw_input())
return vars
def get_expr():
print "Please enter the expression to use"
return str(raw_input())
def convert_to_expr(inputStr):
return eval(inputStr)
def main():
vars = get_vars()
expr = get_expr()
print("recieved input: " + str(vars) + " expr " + str(expr))
print "Truth table for " + str(len(vars)) + "variable(s)"
for i in enumerate(truth_table(vars, expr)):
print i
def fixed_table(numvars):
"""
Generate true/false permutations for the given number of variables.
So if numvars=2
Returns (not necessarily in this order):
True, True
True, False
False, False
False, True
"""
if numvars is 1:
yield [True]
yield [False]
else:
for i in fixed_table(numvars-1):
yield i + [True]
yield i + [False]
def truth_table(vars, expr):
"""
Takes an array of variables, vars, and displays a truth table
for each possible value combination of vars.
"""
for cond in fixed_table(len(vars)):
values=dict(zip(vars,cond))
yield cond + [eval(expr)]
if __name__ == "__main__":
main()
If I do the following, here's the output:
Please enter the number of variables to use in the equation
3
please enter each of the variables on a newline
p
q
r
Please enter the expression to use
p&q&r
recieved input: ['p', 'q', 'r'] expr p&q&r
Truth table for 3variable(s)
(0, [True, True, True, And(p, q, r)])
(1, [True, True, False, And(p, q, r)])
(2, [True, False, True, And(p, q, r)])
(3, [True, False, False, And(p, q, r)])
(4, [False, True, True, And(p, q, r)])
(5, [False, True, False, And(p, q, r)])
(6, [False, False, True, And(p, q, r)])
(7, [False, False, False, And(p, q, r)])
If some software exists to perform this task, I'd really like to know about it :-)
Thanks in advance.
You're really close! Once you've got And(p, q, r)
and your truth tables, you can use the subs
method to push your values
dict into the expression: i.e.
yield cond + [eval(expr).subs(values)]
gives
p&q&r
recieved input: ['p', 'q', 'r'] expr p&q&r
Truth table for 3variable(s)
(0, [True, True, True, True])
(1, [True, True, False, False])
(2, [True, False, True, False])
(3, [True, False, False, False])
(4, [False, True, True, False])
(5, [False, True, False, False])
(6, [False, False, True, False])
(7, [False, False, False, False])
But I think there's a simpler way to do this. The sympify
function already works to generate expressions from strings:
In [7]: expr = sympify("x & y | z")
In [8]: expr
Out[8]: Or(z, And(x, y))
and we can get the variables too:
In [9]: expr.free_symbols
Out[9]: set([x, z, y])
plus itertools.product
can generate the values (and cartes
is an alias for it in sympy
):
In [12]: cartes([False, True], repeat=3)
Out[12]: <itertools.product at 0xa24889c>
In [13]: list(cartes([False, True], repeat=3))
Out[13]:
[(False, False, False),
(False, False, True),
(False, True, False),
(False, True, True),
(True, False, False),
(True, False, True),
(True, True, False),
(True, True, True)]
Combining these, which is basically just using sympify
to get the expression and avoid eval
, using the built-in Cartesian product, and adding .subs()
to use your values
dictionary, we get:
def explore():
expr_string = raw_input("Enter an expression: ")
expr = sympify(expr_string)
variables = sorted(expr.free_symbols)
for truth_values in cartes([False, True], repeat=len(variables)):
values = dict(zip(variables, truth_values))
print sorted(values.items()), expr.subs(values)
which gives
In [22]: explore()
Enter an expression: a & (b | c)
[(a, False), (b, False), (c, False)] False
[(a, False), (b, False), (c, True)] False
[(a, False), (b, True), (c, False)] False
[(a, False), (b, True), (c, True)] False
[(a, True), (b, False), (c, False)] False
[(a, True), (b, False), (c, True)] True
[(a, True), (b, True), (c, False)] True
[(a, True), (b, True), (c, True)] True
This is shorter than yours, but it uses exactly your approach.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With