Problem: I need to drop (n) employees from office to their homes(co-ordinates available). I have (x) 7-seater & (y) 4-seater cabs available.
I have to design an algorithm to drop all the employees to their homes while travelling minimum distance.
Also, the algorithm must tell me how many 7-seater or/and 4-seater vehicles I must choose so as to travel minimum distance.
eg. If I have 15 employees then the algorithm may tell me to use 1 (7-seater) cab & 2 (4-seater) cab & have the employees in each cab as following:
[(E2, E4, E6, E8), (E1, E3, E5, E7, E9, E10, E12), (E11, E13, E14, E15)]
Approach: I'm thinking of this as a Travelling Salesman Problem with multiple salesmen with an upper limit on number of cities each can travel. Also salesmen do not need to come back to the origin. Ant's colony problem came to my mind, but I can't really choose wisely which algorithm to choose
Requirement: I really need the ALGORITHM. Either TSP or Ant's colony, doesn't matter. I'll welcome opinions, but I really need the ALGORITHM.
This is a cost minimization problem, not a travelling salesman problem. It is related to TSP in the sense that TSP is a very specific cost minimization problem.
The solution consists of three steps:
Create distinct paths that do not intersect, nor branch. These will be your routes and help prevent wasteful route overlaps. Use cost(path) = distance(furthest node and origin) + taxi_cost(nodes) + sum(distance between nodes)
to compare paths and/or brute-force all potential networks. Networks are layouts of paths. DO NOT BRANCH THE PATHS!!
capacity
. If you also wish to choose the cheapest way to transport your employees, utility(taxi) = capacity/cost
. From this our simplest solution is to be greedy; who cares about empty space? If you really care about filling up taxis perfectly (as opposed to cost efficiently), you'll need a much more complex solution. You only specify the least distance as your metric (with each additional taxi multiplying cost). I assume this is a proxy to say 'I don't want to pay too much'.
Therefore: taxi_cost(nodes) = math.floor(amount(nodes)/max(utility(taxis)+1)
. This equation selects the cheapest, roomiest taxi, and figures out how many of them are required to fully service the route.sum(cost(path))
The algorithm above is not perfect, but it will have many desirable tendencies.
Every step closer to perfection costs you many times more than the previous step, so diminished returns are acceptable if the solution provide desirable features. Although the algorithm makes some potentially sub-optimal tradeoffs, they come with huge value; your network of taxi routes becomes much easier to modify.
If you'd like to make an optimal solution, the Knapsack Problem, Coin Problem, and Change-making Problem help determine the cost of taxis and routes.
Spanning Trees are the most effective way to determine routes. Center the spanning tree at the office and calculate the cost of each branch as the maximum distance from the office. Try to keep each branch servicing areas with high density to make it easier to add and remove taxi routes.
Studying pathfinding can help you learn how to determine good cost functions so that you can numerically compare different potential paths. Remember that your network consists of a set of paths, but will require its own cost function so that you can compare different layouts.
I've written an in-depth guide to pathfinding for this answer. Pathfinding articles are few and just don't go into enough depth for a lot of problem spaces. A good cost function can get you a nearly perfect solution if you have multiple priorities. Unfortunately, good cost functions are domain specific so you will need to identify them yourself. Feel free to message me if you aren't sure how to make a path with certain traits and I'll help you figure out a good cost function.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With