This is an academic rather than practical question. In the Traveling Salesman Problem, or any other which involves finding a minimum optimization ... if one were using a map/reduce approach it seems like there would be some value to having some means for the current minimum result to be broadcast to all of the computational nodes in some manner that allows them to abandon computations which exceed that.
In other words if we map the problem out we'd like each node to know when to give up on a given partial result before it's complete but when it's already exceeded some other solution.
One approach that comes immediately to mind would be if the reducer had a means to provide feedback to the mapper. Consider if we had 100 nodes, and millions of paths being fed to them by the mapper. If the reducer feeds the best result to the mapper than that value could be including as an argument along with each new path (problem subset). In this approach the granularity is fairly rough ... the 100 nodes will each keep grinding away on their partition of the problem to completion and only get the new minimum with their next request from the mapper. (For a small number of nodes and a huge number of problem partitions/subsets to work across this granularity would be inconsequential; also it's likely that one could apply heuristics to the sequence in which the possible routes or problem subsets are fed to the nodes to get a rapid convergence towards the optimum and thus minimize the amount of "wasted" computation performed by the nodes).
Another approach that comes to mind would be for the nodes to be actively subscribed to some sort of channel, or multicast or even broadcast from which they could glean new minimums from their computational loop. In that case they could immediately abandon a bad computation when notified of a better solution (by one of their peers).
So, my questions are:
that's a cool theme, that doesn't have that much literature, that was done on it before. So this is pretty much a brainstorming post, rather than an answer to all your problems ;)
So every TSP can be expressed as a graph, that looks possibly like this one: (taken it from the german Wikipedia)
Now you can run a graph algorithm on it. MapReduce can be used for graph processing quite well, although it has much overhead.
You need a paradigm that is called "Message Passing". It was described in this paper here: Paper.
And I blog'd about it in terms of graph exploration, it tells quite simple how it works. My Blogpost
This is the way how you can tell the mapper what is the current minimum result (maybe just for the vertex itself).
With all the knowledge in the back of the mind, it should be pretty standard to think of a branch and bound algorithm (that you described) to get to the goal. Like having a random start vertex and branching to every adjacent vertex. This causes a message to be send to each of this adjacents with the cost it can be reached from the start vertex (Map Step). The vertex itself only updates its cost if it is lower than the currently stored cost (Reduce Step). Initially this should be set to infinity.
You're doing this over and over again until you've reached the start vertex again (obviously after you visited every other one). So you have to somehow keep track of the currently best way to reach a vertex, this can be stored in the vertex itself, too. And every now and then you have to bound this branching and cut off branches that are too costly, this can be done in the reduce step after reading the messages.
Basically this is just a mix of graph algorithms in MapReduce and a kind of shortest paths.
Note that this won't yield to the optimal way between the nodes, it is still a heuristic thing. And you're just parallizing the NP-hard problem.
BUT a little self-advertising again, maybe you've read it already in the blog post I've linked, there exists an abstraction to MapReduce, that has way less overhead in this kind of graph processing. It is called BSP (Bulk synchonous parallel). It is more freely in the communication and it's computing model. So I'm sure that this can be a lot better implemented with BSP than MapReduce. You can realize these channels you've spoken about better with it.
I'm currently involved in an Summer of Code project which targets these SSSP problems with BSP. Maybe you want to visit if you're interested. This could then be a part solution, it is described very well in my blog, too. SSSP's in my blog
I'm excited to hear some feedback ;)
It seems that Storm implements what I was thinking of. It's essentially a computational topology (think of how each compute node might be routing results based on a key/hashing function to the specific reducers).
This is not exactly what I described, but might be useful if one had a sufficiently low-latency way to propagate current bounding (i.e. local optimum information) which each node in the topology could update/receive in order to know which results to discard.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With