I have a 2D array of shape (M*N,N)
which in fact consists of M
, N*N
arrays. I would like to transpose all of these elements(N*N
matrices) in a vectorized fashion. As an example,
import numpy as np
A=np.arange(1,28).reshape((9,3))
print "A before transposing:\n", A
for i in range(3):
A[i*3:(i+1)*3,:]=A[i*3:(i+1)*3,:].T
print "A after transposing:\n", A
This code generates the following output:
A before transposing:
[[ 1 2 3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]
[13 14 15]
[16 17 18]
[19 20 21]
[22 23 24]
[25 26 27]]
A after transposing:
[[ 1 4 7]
[ 2 5 8]
[ 3 6 9]
[10 13 16]
[11 14 17]
[12 15 18]
[19 22 25]
[20 23 26]
[21 24 27]]
Which I expect. But I want the vectorized version.
Rotating or transposing R objects You can rotate the data. frame so that the rows become the columns and the columns become the rows. That is, you transpose the rows and columns. You simply use the t() command.
The transpose() method can transpose the 2D arrays; on the other hand, it does not affect 1D arrays. Thus, the transpose() method transposes the 2D numpy array.
Here's a nasty way to do it in one line!
A.reshape((-1, 3, 3)).swapaxes(-1, 1).reshape(A.shape)
Step by step. Reshape to (3, 3, 3)
>>> A.reshape((-1, 3, 3))
array([[[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9]],
[[10, 11, 12],
[13, 14, 15],
[16, 17, 18]],
[[19, 20, 21],
[22, 23, 24],
[25, 26, 27]]])
Then perform a transpose-like operation swapaxes
on each sub-array
>>> A.reshape((-1, 3, 3)).swapaxes(-1, 1)
array([[[ 1, 4, 7],
[ 2, 5, 8],
[ 3, 6, 9]],
[[10, 13, 16],
[11, 14, 17],
[12, 15, 18]],
[[19, 22, 25],
[20, 23, 26],
[21, 24, 27]]])
Finally reshape to (9, 3)
.
>>> A.reshape((-1, 3, 3)).swapaxes(-1, 1).reshape(A.shape)
array([[ 1, 4, 7],
[ 2, 5, 8],
[ 3, 6, 9],
[10, 13, 16],
[11, 14, 17],
[12, 15, 18],
[19, 22, 25],
[20, 23, 26],
[21, 24, 27]])
>>>
I think that with any method, data must be copied since there's no 2d strides/shape that can generate the result from:
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27])
(is there?) In my version I think data is copied in the final reshape step
In [42]: x = np.arange(1,28).reshape((9,3))
In [43]: x
Out[43]:
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9],
[10, 11, 12],
[13, 14, 15],
[16, 17, 18],
[19, 20, 21],
[22, 23, 24],
[25, 26, 27]])
In [31]: r,c = x.shape
In [39]: z = np.vstack(np.hsplit(x.T,r/c))
In [45]: z
Out[45]:
array([[ 1, 4, 7],
[ 2, 5, 8],
[ 3, 6, 9],
[10, 13, 16],
[11, 14, 17],
[12, 15, 18],
[19, 22, 25],
[20, 23, 26],
[21, 24, 27]])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With