I want to transpose data sets similar to my.data
below and then sum the rows.
my.data <- "landuse units year county.a county.b county.c county.d
apple acres 2010 0 2 4 6
pear acres 2010 10 20 30 40
peach acres 2010 500 400 300 200"
my.data2 <- read.table(textConnection(my.data), header = T)
my.data2
The desired output is:
counties all.fruit
county.a 510
county.b 422
county.c 334
county.d 246
I can do this with the code below. However, the following code seems like it must be enormous overkill. I am hoping there is a much simpler solution.
# transpose the data set
tmy.data2 <- t(my.data2)
tmy.data2 <- as.data.frame(tmy.data2)
# assign row names to the data set
my.rows <- row.names(tmy.data2)
transposed.data <- cbind(my.rows, tmy.data2)
transposed.data
# extract numbers to obtain row sums
fruit.data <- as.data.frame(transposed.data[4:dim(transposed.data)[1], 2:dim(transposed.data)[2]])
fruit.data2 <- as.matrix(fruit.data)
fruit.data3 <- matrix(as.numeric(fruit.data2), nrow=( dim(fruit.data2)[1] ), byrow=F)
# sum fruit by county
all.fruit <- rowSums(fruit.data3, na.rm=T)
# create row names for summed fruit data
counties <- my.rows[4:length(my.rows)]
almost.final.data <- cbind(counties, all.fruit)
really.final.data <- as.data.frame(almost.final.data)
really.final.data[,2] <- as.numeric(as.character(really.final.data[,2]))
really.final.data
str(really.final.data)
Thank you for any suggestions. I can use the code above, but view this request as an opportunity to greatly improve my programming.
Why can't you just add the columns instead?
colSums(my.data2[, 4:7])
or
library(plyr)
numcolwise(sum)(my.data2)
year county.a county.b county.c county.d
1 6030 510 422 334 246
>
That said, if you want to re organize there are many choices. The reshape2
package provides pleasant syntax:
library(reshape2)
> my.data.melt <- melt(my.data2, id.vars=c('units', 'year', 'landuse'))
> my.data.melt
units year landuse variable value
1 acres 2010 apple county.a 0
2 acres 2010 pear county.a 10
3 acres 2010 peach county.a 500
4 acres 2010 apple county.b 2
5 acres 2010 pear county.b 20
6 acres 2010 peach county.b 400
7 acres 2010 apple county.c 4
8 acres 2010 pear county.c 30
9 acres 2010 peach county.c 300
10 acres 2010 apple county.d 6
11 acres 2010 pear county.d 40
12 acres 2010 peach county.d 200
I would then use plyr
:
> library(plyr)
> ddply(my.data.melt, .(variable), summarise, all.fruit=sum(value))
variable all.fruit
1 county.a 510
2 county.b 422
3 county.c 334
4 county.d 246
>
You can also do this using base R aggregate
or the data.table
package.
> library(data.table)
> my.data.melt <- as.data.table(melt(my.data2, id.vars=c('units', 'year', 'landuse')))
> my.data.melt[,list(all.fruit = sum(value)), by = variable]
variable all.fruit
1: county.a 510
2: county.b 422
3: county.c 334
4: county.d 246
or if you wanted it to stay in wide format
> DT <- as.data.table(my.data2)
> DT[, lapply(.SD, sum, na.rm=TRUE), .SDcols = grep("county",names(DT))])
county.a county.b county.c county.d
1: 510 422 334 246
# NB: This needs v1.8.3. Before that, an as.data.table() call was required as
# the lapply(.SD,...) used to return a named list in this no grouping case.
> aggregate(value~variable, my.data.melt, sum)
variable value
1 county.a 510
2 county.b 422
3 county.c 334
4 county.d 246
I would just subset the "county"
columns, sum them, and create a data.frame using the results:
out <- colSums(my.data2[,grepl("county",colnames(my.data2))])
out2 <- data.frame(counties=names(out), all.fruit=out,
row.names=NULL, stringsAsFactors=FALSE)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With