I used Counter
on a list to compute this variable:
final = Counter(event_container)
print final gives:
Counter({'fb_view_listing': 76, 'fb_homescreen': 63, 'rt_view_listing': 50, 'rt_home_start_app': 46, 'fb_view_wishlist': 39, 'fb_view_product': 37, 'fb_search': 29, 'rt_view_product': 23, 'fb_view_cart': 22, 'rt_search': 12, 'rt_view_cart': 12, 'add_to_cart': 2, 'create_campaign': 1, 'fb_connect': 1, 'sale': 1, 'guest_sale': 1, 'remove_from_cart': 1, 'rt_transaction_confirmation': 1, 'login': 1})
Now I want to convert final
into a Pandas DataFrame
, but when I'm doing:
final_df = pd.DataFrame(final)
but I got an error.
I guess final is not a proper dictionary, so how can I convert final
to a dictionary? Or is it an other way to convert final
to a DataFrame
?
Pandas DataFrame count() MethodThe count() method counts the number of not empty values for each row, or column if you specify the axis parameter as axis='columns' , and returns a Series object with the result for each row (or column).
You can construct using from_dict
and pass param orient='index'
, then call reset_index
so you get a 2 column df:
In [40]: from collections import Counter d = Counter({'fb_view_listing': 76, 'fb_homescreen': 63, 'rt_view_listing': 50, 'rt_home_start_app': 46, 'fb_view_wishlist': 39, 'fb_view_product': 37, 'fb_search': 29, 'rt_view_product': 23, 'fb_view_cart': 22, 'rt_search': 12, 'rt_view_cart': 12, 'add_to_cart': 2, 'create_campaign': 1, 'fb_connect': 1, 'sale': 1, 'guest_sale': 1, 'remove_from_cart': 1, 'rt_transaction_confirmation': 1, 'login': 1}) df = pd.DataFrame.from_dict(d, orient='index').reset_index() df Out[40]: index 0 0 login 1 1 rt_transaction_confirmation 1 2 fb_view_cart 22 3 fb_connect 1 4 rt_view_product 23 5 fb_search 29 6 sale 1 7 fb_view_listing 76 8 add_to_cart 2 9 rt_view_cart 12 10 fb_homescreen 63 11 fb_view_product 37 12 rt_home_start_app 46 13 fb_view_wishlist 39 14 create_campaign 1 15 rt_search 12 16 guest_sale 1 17 remove_from_cart 1 18 rt_view_listing 50
You can rename the columns to something more meaningful:
In [43]: df = df.rename(columns={'index':'event', 0:'count'}) df Out[43]: event count 0 login 1 1 rt_transaction_confirmation 1 2 fb_view_cart 22 3 fb_connect 1 4 rt_view_product 23 5 fb_search 29 6 sale 1 7 fb_view_listing 76 8 add_to_cart 2 9 rt_view_cart 12 10 fb_homescreen 63 11 fb_view_product 37 12 rt_home_start_app 46 13 fb_view_wishlist 39 14 create_campaign 1 15 rt_search 12 16 guest_sale 1 17 remove_from_cart 1 18 rt_view_listing 50
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With