Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Training a Keras model yields multiple optimizer errors

So I need to retrain Tiny YOLO using my own dataset. The model I am using can be found here: keras-yolo3 .

I started training and I get multiple optimizer errors, added the code of the errors to stop confusion. And I noticed the training is going slow even tho it should use the GPU, and after digging a bit I found that this is not using the GPU for training. I should note that on another smaller network which I used for learning training uses GPU so everything is set correctly from that side, and they are no errors of this type when I did that training.

Is this slow and somewhat CPU training because of said errors? How can I fix this does anyone know?

Using TensorFlow backend.
WARNING: Logging before flag parsing goes to stderr.
2019-08-19 09:45:08.057713: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library nvcuda.dll
2019-08-19 09:45:08.264577: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties:
name: GeForce GTX 1060 6GB major: 6 minor: 1 memoryClockRate(GHz): 1.8475
pciBusID: 0000:01:00.0
2019-08-19 09:45:08.270723: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2019-08-19 09:45:08.275827: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0
2019-08-19 09:45:09.214197: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1181] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-08-19 09:45:09.217605: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1187]      0
2019-08-19 09:45:09.219777: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 0:   N
2019-08-19 09:45:09.222399: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4712 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 6GB, pci bus id: 0000:01:00.0, compute capability: 6.1)
Create Tiny YOLOv3 model with 6 anchors and 80 classes.
Load weights model_data/tiny_yolo_weights.h5.
Freeze the first 42 layers of total 44 layers.
Train on 8298 samples, val on 922 samples, with batch size 32.
Epoch 1/50
2019-08-19 09:45:19.742610: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:502] shape_optimizer failed: Invalid argument: Subshape must have computed start >= end since stride is negative, but is 0 and 2 (computed from start 0 and end 9223372036854775807 over shape with rank 2 and stride-1)
2019-08-19 09:45:19.781035: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:502] remapper failed: Invalid argument: Subshape must have computed start >= end since stride is negative, but is 0 and 2 (computed from start 0 and end 9223372036854775807 over shape with rank 2 and stride-1)
2019-08-19 09:45:19.935930: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:502] layout failed: Invalid argument: Subshape must have computed start >= end since stride is negative, but is 0 and 2 (computed from start 0 and end 9223372036854775807 over shape with rank 2 and stride-1)
2019-08-19 09:45:20.168936: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:502] shape_optimizer failed: Invalid argument: Subshape must have computed start >= end since stride is negative, but is 0 and 2 (computed from start 0 and end 9223372036854775807 over shape with rank 2 and stride-1)
2019-08-19 09:45:20.205304: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:502] remapper failed: Invalid argument: Subshape must have computed start >= end since stride is negative, but is 0 and 2 (computed from start 0 and end 9223372036854775807 over shape with rank 2 and stride-1)
258/259 [============================>.] - ETA: 3s - loss: 41.82962019-08-19 10:01:51.053474: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:502] remapper failed: Invalid argument: Subshape must have computed start >= end since stride is negative, but is 0 and 2 (computed from start 0 and end 9223372036854775807 over shape with rank 2 and stride-1)
2019-08-19 10:01:51.138957: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:502] layout failed: Invalid argument: Subshape must have computed start >= end since stride is negative, but is 0 and 2 (computed from start 0 and end 9223372036854775807 over shape with rank 2 and stride-1)
2019-08-19 10:01:51.243888: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:502] remapper failed: Invalid argument: Subshape must have computed start >= end since stride is negative, but is 0 and 2 (computed from start 0 and end 9223372036854775807 over shape with rank 2 and stride-1)
259/259 [==============================] - 1078s 4s/step - loss: 41.8008 - val_loss: 35.7122
like image 989
UrosT Avatar asked Aug 19 '19 14:08

UrosT


People also ask

What is the significance of the fit method while training a keras model?

fit method. Trains the model for a fixed number of epochs (iterations on a dataset).

How do you train a keras model?

Fit Keras Model You can train or fit your model on your loaded data by calling the fit() function on the model. Training occurs over epochs, and each epoch is split into batches. One epoch comprises one or more batches, based on the chosen batch size, and the model is fit for many epochs.

What is verbose in model fit?

verbose = 2, one line per epoch i.e. epoch no./total no. of epochs.

Which function starts training of a keras model?

The most common and most powerful way to build Keras models is the Functional API. To build models with the Functional API, you start by specifying the shape (and optionally the dtype) of your inputs. If any dimension of your input can vary, you can specify it as None .


1 Answers

I have found solution here: https://github.com/tensorflow/tensorrt/issues/118

You have to change lines(140/141) in yolo3/model.py:

box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats))
box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats))

to:

box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[...,::-1], K.dtype(feats))
box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[...,::-1], K.dtype(feats))

Also in my case helps decrease batch size from 8 to 4.

like image 71
Piotr Golinski Avatar answered Sep 20 '22 19:09

Piotr Golinski