I have got one question to print one million prime numbers . I have written a java program for that .. It's currently taking 1.5 mins approx to calculate it .. I think my solution is not that efficient. I have used the below algo:
I have read several other solutions as well , but I didn't find a good answer. Please suggest ideally what should be approx minimum time to calculate this and what changes are required to make the algorithm more efficient.
First, 1 is not a prime number. Second, the millionth prime is 15,485,863, so you need to be prepared for some large data-handling.
Methods to Find Prime Numbers Method 1: Two consecutive numbers which are natural numbers and prime numbers are 2 and 3. Apart from 2 and 3, every prime number can be written in the form of 6n + 1 or 6n – 1, where n is a natural number. Note: These both are the general formula to find the prime numbers.
Take a number, say, 26577. The unit digit of this number is not 0, 2, 4, 6 or 8. Now, take the sum of digits which will be: 2 + 6 + 5 + 7 + 7 = 27. Since 27 is divisible by 3, 26577 is not a prime number.
If you added 1 to your list, your answer is wrong already :)
Anyway, Sieve of Erathosthenes is where you should begin, it's incredibly simple and quite efficient.
Once you're familiar with the idea of sieves and how they work, you can move on to Sieve of Atkin, which is a bit more complicated but obviously more efficient.
Key things:
A simple sieve of Eratosthenes runs like the clappers. This calculates the 1,000,000th prime in less than a second on my box:
class PrimeSieve
{
public List<int> Primes;
private BitArray Sieve;
public PrimeSieve(int max)
{
Primes = new List<int> { 2, 3 }; // Must include at least 2, 3.
Sieve = new BitArray(max + 1);
foreach (var p in Primes)
for (var i = p * p; i < Sieve.Length; i += p) Sieve[i] = true;
}
public int Extend()
{
var p = Primes.Last() + 2; // Skip the even numbers.
while (Sieve[p]) p += 2;
for (var i = p * p; i < Sieve.Length; i += p) Sieve[i] = true;
Primes.Add(p);
return p;
}
}
EDIT: sieving optimally starts from p^2, not 2p, as Will Ness correctly points out (all compound numbers below p^2 will have been marked in earlier iterations).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With