In Python, if the builtin pow()
function is used with 3 arguments, the last one is used as the modulus of the exponentiation, resulting in a Modular exponentiation operation.
In other words, pow(x, y, z)
is equivalent to (x ** y) % z
, but accordingly to Python help, the pow()
may be more efficient.
When I timed the two versions, I got the opposite result, the pow()
version seemed slower than the equivalent syntax:
Python 2.7:
>>> import sys
>>> print sys.version
2.7.11 (default, May 2 2016, 12:45:05)
[GCC 4.9.3]
>>>
>>> help(pow)
Help on built-in function pow in module __builtin__: <F2> Show Source
pow(...)
pow(x, y[, z]) -> number
With two arguments, equivalent to x**y. With three arguments,
equivalent to (x**y) % z, but may be more efficient (e.g. for longs).
>>>
>>> import timeit
>>> st_expmod = '( 65537 ** 767587 ) % 14971787'
>>> st_pow = 'pow(65537, 767587, 14971787)'
>>>
>>> timeit.timeit(st_expmod)
0.016651153564453125
>>> timeit.timeit(st_expmod)
0.016621112823486328
>>> timeit.timeit(st_expmod)
0.016611099243164062
>>>
>>> timeit.timeit(st_pow)
0.8393168449401855
>>> timeit.timeit(st_pow)
0.8449611663818359
>>> timeit.timeit(st_pow)
0.8767969608306885
>>>
Python 3.4:
>>> import sys
>>> print(sys.version)
3.4.3 (default, May 2 2016, 12:47:35)
[GCC 4.9.3]
>>>
>>> help(pow)
Help on built-in function pow in module builtins:
pow(...)
pow(x, y[, z]) -> number
With two arguments, equivalent to x**y. With three arguments,
equivalent to (x**y) % z, but may be more efficient (e.g. for ints).
>>>
>>> import timeit
>>> st_expmod = '( 65537 ** 767587 ) % 14971787'
>>> st_pow = 'pow(65537, 767587, 14971787)'
>>>
>>> timeit.timeit(st_expmod)
0.014722830994287506
>>> timeit.timeit(st_expmod)
0.01443593599833548
>>> timeit.timeit(st_expmod)
0.01485627400688827
>>>
>>> timeit.timeit(st_pow)
3.3412855619972106
>>> timeit.timeit(st_pow)
3.2800855879904702
>>> timeit.timeit(st_pow)
3.323372773011215
>>>
Python 3.5:
>>> import sys
>>> print(sys.version)
3.5.1 (default, May 2 2016, 14:34:13)
[GCC 4.9.3
>>>
>>> help(pow)
Help on built-in function pow in module builtins:
pow(x, y, z=None, /)
Equivalent to x**y (with two arguments) or x**y % z (with three arguments)
Some types, such as ints, are able to use a more efficient algorithm when
invoked using the three argument form.
>>>
>>> import timeit
>>> st_expmod = '( 65537 ** 767587 ) % 14971787'
>>> st_pow = 'pow(65537, 767587, 14971787)'
>>>
>>> timeit.timeit(st_expmod)
0.014827249979134649
>>> timeit.timeit(st_expmod)
0.014763347018742934
>>> timeit.timeit(st_expmod)
0.014756042015505955
>>>
>>> timeit.timeit(st_pow)
3.6817933860002086
>>> timeit.timeit(st_pow)
3.6238356370013207
>>> timeit.timeit(st_pow)
3.7061628740048036
>>>
What is the explanation for the above numbers?
Edit:
After the answers I see that in the st_expmod
version, the computation were not being executed in runtime, but by the parser and the expression became a constant..
Using the fix suggested by @user2357112 in Python2:
>>> timeit.timeit('(a**b) % c', setup='a=65537; b=767587; c=14971787', number=150)
370.9698350429535
>>> timeit.timeit('pow(a, b, c)', setup='a=65537; b=767587; c=14971787', number=150)
0.00013303756713867188
You're not actually timing the computation with **
and %
, because the result gets constant-folded by the bytecode compiler. Avoid that:
timeit.timeit('(a**b) % c', setup='a=65537; b=767587; c=14971787')
and the pow
version will win hands down.
Some glosses on @user2357112's correct answer:
First, if you call eval()
on your two strings by hand, it's obvious that st_expmod
is enormously slower.
Second, it sometimes (like in this case) pays to look at the generated code. Like so:
>>> def f():
... return ( 65537 ** 767587 ) % 14971787
>>> from dis import dis
>>> dis(f)
2 0 LOAD_CONST 5 (10686982)
3 RETURN_VALUE
>>>
You don't really need to know much about Python's byte code to see that the compiled code just loads the answer (10686982) and returns it - all the real work was done when the code was compiled.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With