I have times with dtype numpy.longdouble
and when I'm trying to use that values with timedelta
function I've got errors. But when I convert it to numpy.float64
everything is fine. Could somebody explain that behaviour?
import numpy as np
from datetime import timedelta
t1 = np.array([1000], dtype=np.longdouble)
t2 = np.array([1000], dtype=np.float64)
In [166]: timedelta(seconds=t1[0])
TypeError: unsupported type for timedelta seconds component: numpy.float64
In [167]: timedelta(seconds=t2[0])
Out[167]: datetime.timedelta(0, 1000)
In [168]: timedelta(seconds=t1[0].astype(np.float64))
Out[168]: datetime.timedelta(0, 1000)
When I'm trying to see dtypes of variables they are look the similar but not the same:
In [172]: t1[0].dtype
Out[172]: dtype('float64')
In [173]: t2[0].dtype
Out[173]: dtype('float64')
In [174]: np.longdouble == np.float64
Out[174]: False
In [175]: t1[0].dtype == t2[0].dtype
Out[175]: True
And it's strange that it's not working for np.int32 and np.int64 either:
t3 = np.array([1000], dtype=np.int32)
t4 = np.array([1000], dtype=np.int64)
In [29]: timedelta(t3[0])
TypeError: unsupported type for timedelta days component: numpy.int32
In [69]: timedelta(t4[0])
TypeError: unsupported type for timedelta days component: numpy.int64
I ran into a similar issue where
timedelta(days = value.astype(int))
did not work but
timedelta(days = int(value))
worked.
I hope it is useful for future Googlers.
So maybe
timedelta
for dtypenp.longdouble
isn't implemented?
In short, yes.
From the documentation:
class
datetime.timedelta
([days[, seconds[, microseconds[, milliseconds[, minutes[, hours[, weeks]]]]]]])All arguments are optional and default to
0
. Arguments may be ints, longs, or floats, and may be positive or negative.
Here "long" refers to a Python long
integer, not a longdouble
float.
I think I've figured the seemingly inconsistent behavior of np.float64
.
What seems to be relevant is whether or not the numpy dtype subclasses one of the native Python scalar types that timedelta
accepts.
On my 64 bit machine, running Python 2.7.9, numpy v1.10.1:
In [1]: timedelta(np.float64(1))
Out[1]: datetime.timedelta(1)
In [2]: timedelta(np.float32(1))
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-2-4a7874ba393b> in <module>()
----> 1 timedelta(np.float32(1))
TypeError: unsupported type for timedelta days component: numpy.float32
In [3]: timedelta(np.int64(1))
Out[3]: datetime.timedelta(1)
In [4]: timedelta(np.int32(1))
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-4-0475c6c8f1aa> in <module>()
----> 1 timedelta(np.int32(1))
TypeError: unsupported type for timedelta days component: numpy.int32
In [5]: issubclass(np.float64, float)
Out[5]: True
In [6]: issubclass(np.float32, float)
Out[6]: False
In [7]: issubclass(np.int64, int)
Out[7]: True
In [8]: issubclass(np.int32, int)
Out[8]: False
However the OP reported in the comments that timedelta(np.int64(1))
did not work using Python 3.4.3. I think that is due to the fact that when numpy is built on Python 3x, np.int64
no longer subclasses int
.
Here's what happens in Python 3.4.3:
In [1]: timedelta(np.int64(1))
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-1-9902ea26a52d> in <module>()
----> 1 timedelta(np.int64(1))
TypeError: unsupported type for timedelta days component: numpy.int64
In [2]: issubclass(np.int64, int)
Out[2]: False
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With