Not sure if I got this right or whether there's a better way or an existing library solving this problem already.
In particular I'm not sure if the CAS would need a memory fence... I think not but better ask.
I also tried with an agent and mutable dictionary but my intuition that it would be slower was confirmed and the implementation was more involved.
module CAS =
open System.Threading
let create (value: 'T) =
let cell = ref value
let get () = !cell
let rec swap f =
let before = get()
let newValue = f before
match Interlocked.CompareExchange<'T>(cell, newValue, before) with
| result when obj.ReferenceEquals(before, result) ->
newValue
| _ ->
swap f
get, swap
module Memoization =
let timeToLive milis f =
let get, swap = CAS.create Map.empty
let evict key =
async {
do! Async.Sleep milis
swap (Map.remove key) |> ignore
} |> Async.Start
fun key ->
let data = get()
match data.TryFind key with
| Some v -> v
| None ->
let v = f key
swap (Map.add key v) |> ignore
evict key
v
If you are willing to limit what to memoize to functions that take a string input, you can reuse the functionality from System.Runtime.Caching
.
This should be reasonably robust as part of the core library (you would hope...) but the string limitation is a pretty heavy one and you'd have to benchmark against your current implementation if you want to do a comparison on performance.
open System
open System.Runtime.Caching
type Cached<'a>(func : string -> 'a, cache : IDisposable) =
member x.Func : string -> 'a = func
interface IDisposable with
member x.Dispose () =
cache.Dispose ()
let cache timespan (func : string -> 'a) =
let cache = new MemoryCache(typeof<'a>.FullName)
let newFunc parameter =
match cache.Get(parameter) with
| null ->
let result = func parameter
let ci = CacheItem(parameter, result :> obj)
let cip = CacheItemPolicy()
cip.AbsoluteExpiration <- DateTimeOffset(DateTime.UtcNow + timespan)
cip.SlidingExpiration <- TimeSpan.Zero
cache.Add(ci, cip) |> ignore
result
| result ->
(result :?> 'a)
new Cached<'a>(newFunc, cache)
let cacheAsync timespan (func : string -> Async<'a>) =
let cache = new MemoryCache(typeof<'a>.FullName)
let newFunc parameter =
match cache.Get(parameter) with
| null ->
async {
let! result = func parameter
let ci = CacheItem(parameter, result :> obj)
let cip = CacheItemPolicy()
cip.AbsoluteExpiration <- DateTimeOffset(DateTime.UtcNow + timespan)
cip.SlidingExpiration <- TimeSpan.Zero
cache.Add(ci, cip) |> ignore
return result
}
| result ->
async { return (result :?> 'a) }
new Cached<Async<'a>>(newFunc, cache)
Usage:
let getStuff =
let cached = cacheAsync (TimeSpan(0, 0, 5)) uncachedGetStuff
// deal with the fact that the cache is IDisposable here
// however is appropriate...
cached.Func
If you're never interested in accessing the underlying cache directly you can obviously just return a new function with the same signature of the old - but given the cache is IDisposable, that seemed unwise.
I think in many ways I prefer your solution, but when I faced a similar problem I had a perverse thought that I should really use the built in stuff if I could.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With