The following algorithm is used to find a basin in matrix. The whole question is as follows:
2-D matrix is given where each cell represents height of cell. Water can flow from cell with higher height to lower one. A basin is when there is no cell with lower height in the neighbours (left,right,up,down,diagonal). You have to find maximum size basin block.
I have implemented the code. I am looking for timeComplexity. In my opinion time complexity is O(n * m) where n and m is the row and column of the matrix. Please verify.
public final class Basin {
private Basin() {}
private static enum Direction {
NW(-1, -1), N(0, -1), NE(-1, 1), E(0, 1), SE(1, 1), S(1, 0), SW(1, -1), W(-1, 0);
private int rowDelta;
private int colDelta;
Direction(int rowDelta, int colDelta) {
this.rowDelta = rowDelta;
this.colDelta = colDelta;
}
public int getRowDelta() {
return rowDelta;
}
public int getColDelta() {
return colDelta;
}
}
private static class BasinCount {
private int count;
private boolean isBasin;
private int item;
BasinCount(int count, boolean basin, int item) {
this.count = count;
this.isBasin = basin;
this.item = item;
}
};
/**
* Returns the minimum basin.
* If more than a single minimum basin exists then returns any arbitrary basin.
*
* @param m : the input matrix
* @return : returns the basin item and its size.
*/
public static BasinData getMaxBasin(int[][] m) {
if (m.length == 0) { throw new IllegalArgumentException("The matrix should contain atleast one element."); }
final boolean[][] visited = new boolean[m.length][m[0].length];
final List<BasinCount> basinCountList = new ArrayList<>();
for (int i = 0; i < m.length; i++) {
for (int j = 0; j < m[0].length; j++) {
if (!visited[i][j]) {
basinCountList.add(scan(m, visited, i, j, m[i][j], new BasinCount(0, true, m[i][j])));
}
}
}
return getMaxBasin(basinCountList);
}
private static BasinData getMaxBasin(List<BasinCount> basinCountList) {
int maxCount = Integer.MIN_VALUE;
int item = 0;
for (BasinCount c : basinCountList) {
if (c.isBasin) {
if (c.count > maxCount) {
maxCount = c.count;
item = c.item;
}
}
}
return new BasinData(item, maxCount);
}
private static BasinCount scan(int[][] m, boolean[][] visited, int row, int col, int item, BasinCount baseCount) {
// array out of index
if (row < 0 || row == m.length || col < 0 || col == m[0].length) return baseCount;
// neighbor "m[row][col]" is lesser than me. now i cannot be the basin.
if (m[row][col] < item) {
baseCount.isBasin = false;
return baseCount;
}
// my neighbor "m[row][col]" is greater than me, thus not to add it to the basin.
if (m[row][col] > item) return baseCount;
// my neighbor is equal to me, but i happen to have visited him already. thus simply return without adding count.
// this is optimisitic recursion as described by rolf.
if (visited[row][col]) {
return baseCount;
}
visited[row][col] = true;
baseCount.count++;
for (Direction dir : Direction.values()) {
scan(m, visited, row + dir.getRowDelta(), col + dir.getColDelta(), item, baseCount);
/**
* once we know that current 'item' is not the basin, we do "want" to explore other dimensions.
* With the commented out code - consider: m3
* If the first 1 to be picked up is "1 @ row2, col4." This hits zero, marks basin false and returns.
* Next time it starts with "1 @ row 0, col 0". This never encounters zero, because "1 @ row2, col4." is visited.
* this gives a false answer.
*/
// if (!baseCount.basin) {
// System.out.println(baseCount.item + "-:-:-");
// return baseCount;
// }
}
return baseCount;
}
Yes, your code (assuming it works; I have not tested it) is O(n * m) in time, and O(n * m) in space.
Complexities cannot be lower than O(n * m), since any cell can be a part of a neighbouring max-basin in the general case, and all must therefore be (in general) examined. Your complexity is O(n * m) due to the two nested for-loops in getMaxBasin, and the fact that visited[i][j] can only be set at a single place (inside scan()), and prohibits later visits of the same cell.
Due to recursion, every time you chain a call scan(), you are adding to the stack. With a sufficiently-long chain of scan() calls, you could run into stack limits. The worst-case scenario is a zig-zag pattern so that the stack ends up containing a scan() call for each an every cell.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With