Currently I can't understand when we should use volatile
to declare variable.
I have do some study and searched some materials about it for a long time and know that when a field is declared volatile, the compiler and runtime are put on notice that this variable is shared and that operations on it should not be reordered with other memory operations.
However, I still can't understand in what scenario we should use it. I mean can someone provide any example code which can prove that using "volatile" brings benefit or solve problems compare to without using it?
A volatile keyword in C is nothing but a qualifier that is used by the programmer when they declare a variable in source code. It is used to inform the compiler that the variable value can be changed any time without any task given by the source code. Volatile is usually applied to a variable when we are declaring it.
volatile means two things − - The value of the variable may change without any code of yours changing it. Therefore whenever the compiler reads the value of the variable, it may not assume that it is the same as the last time it was read, or that it is the same as the last value stored, but it must be read again.
To declare a variable volatile, include the keyword volatile before or after the data type in the variable definition.
C's volatile keyword is a qualifier that is applied to a variable when it is declared. It tells the compiler that the value of the variable may change at any time--without any action being taken by the code the compiler finds nearby.
Here is an example of why volatile
is necessary. If you remove the keyword volatile
, thread 1 may never terminate. (When I tested on Java 1.6 Hotspot on Linux, this was indeed the case - your results may vary as the JVM is not obliged to do any caching of variables not marked volatile
.)
public class ThreadTest {
volatile boolean running = true;
public void test() {
new Thread(new Runnable() {
public void run() {
int counter = 0;
while (running) {
counter++;
}
System.out.println("Thread 1 finished. Counted up to " + counter);
}
}).start();
new Thread(new Runnable() {
public void run() {
// Sleep for a bit so that thread 1 has a chance to start
try {
Thread.sleep(100);
} catch (InterruptedException ignored) {
// catch block
}
System.out.println("Thread 2 finishing");
running = false;
}
}).start();
}
public static void main(String[] args) {
new ThreadTest().test();
}
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With