NOTE: I mention the next couple of paragraphs as background. If you just want a TL;DR, feel free to skip down to the numbered questions as they are only indirectly related to this info.
I'm currently writing a python script that does some stuff with POSIX dates (among other things). Unit testing these seems a little bit difficult though, since there's such a wide range of dates and times that can be encountered.
Of course, it's impractical for me to try to test every single date/time combination possible, so I think I'm going to try a unit test that randomizes the inputs and then reports what the inputs were if the test failed. Statisically speaking, I figure that I can achieve a bit more completeness of testing than I could if I tried to think of all potential problem areas (due to missing things) or testing all cases (due to sheer infeasability), assuming that I run it enough times.
So here are a few questions (mainly indirectly related to the above ):
I agree with Federico - randomised testing is counterproductive. If a test won't reliably pass or fail, it's very hard to fix it and know it's fixed. (This is also a problem when you introduce an unreliable dependency, of course.)
Instead, however, you might like to make sure you've got good data coverage in other ways. For instance:
In short, still try a lot of values, but do so programmatically and repeatably. You don't need every value you try to be a literal in a test - it's fine to loop round all known values for one axis of your testing, etc.
You'll never get complete coverage, but it will at least be repeatable.
EDIT: I'm sure there are places where random tests are useful, although probably not for unit tests. However, in this case I'd like to suggest something: use one RNG to create a random but known seed, and then seed a new RNG with that value - and log it. That way if something interesting happens you will be able to reproduce it by starting an RNG with the logged seed.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With