This is the following part of the below:
2) Additional question:
After getting the average of the non-zero neighbors, I also want to test if the neighbor elements are equal, lesser, or greater than the average of the nonzeros. If it is greater or equal then '1' or else '0'.
Note: if the neighbors are with in the radius of the two or more centres, take the smallest centre average to test.
0 12 9
4 **9** 15
11 19 0
The '9' in the middle is within the radius of 12, 15, and 19 centres, so take the minimum average of those min[9.000, 9.000, 8.000]=8.000
For example, when radius = 1 m or 1 element away.
new_x =
0 0 0 0 0
0 0 **9.0000** 9.0000 0
0 4.0000 9.0000 **9.0000** 0
0 **8.3333** **8.0000** 0 0
0 2.0000 4.0000 8.0000 0
0 4.0000 5.0000 8.0000 0
0 0 0 0 0
Test_x =
0 0 0 0 0
0 0 **9.0000** 1 0
0 0 1 **9.0000** 0
0 **8.3333** **8.0000** 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
=================================================================================
1) Say if I have a matrix, shown as below,
X =
0 0 0 0 0
0 0 12 9 0
0 4 9 15 0
0 11 19 0 0
0 2 4 8 0
0 4 5 8 0
0 0 0 0 0
and I want to find the average of the surrounding non-zero elements that is greater than 10. The rest of the elements still remain the same i.e. elements < 10.
So I want my solution to look something like,
new_x =
0 0 0 0 0
0 0 9.0000 9.0000 0
0 4.0000 9.0000 9.0000 0
0 8.3333 8.0000 0 0
0 2.0000 4.0000 8.0000 0
0 4.0000 5.0000 8.0000 0
0 0 0 0 0
Not: that I am NOT only looking at the neighbors of the element thats greather than some value (i.e. 10 in this case).
Lets say any elements thats are greater than 10 are the 'centre' and we want to find the avearge of the non-zeros with the radius of say 1 m. where 1 metre = 1 element away from the centre.
Note: It might not always be 1 meter away in radius i.e. can be 2 or more. In this case it wont be just top, bottom, left and right of the centre.
****Also Be aware of the matrix boundary. For example, when radius = 2 or more, some of the average of nonzero neighbors are out side the boundary.**
For example,
For radius =1 m = 1 element away, new_x = average of [(i+1,j) , (i-1,j) , (i,j+1) and (i,j-1)] - top, bottom, right, and left of the centre.
For radius =2 m = 2 elements away, new_x = average of [(i+1,j), (i+2,j) , (i-1,j) , (i-2,j), (i,j+1), (i,j+2), (i,j-1), (i,j-2), (i+1,j+1), (i+1,j-1), (i-1,j-1), and (i-1,j+1)].
==================================================================
I have tried a few things before, however I am not familiar with the functions.
So please help me to solve the problem.
Thank you in advance.
EDIT: Note this requires functions from the Image Processing Toolbox, namely: COLFILT and STREL
r = 1; %# radius
t = 10; %# threshold value
mid = round((2*r+1)^2/2); %# mid point
nhood = getnhood(strel('diamond', r));
nhood(mid) = false;
fcn = @(M)sum(M(nhood(:),:),1)./(sum(M(nhood(:),:)~=0)+all(M(nhood(:),:)==0)).*(M(mid,:)>=t)+M(mid,:).*(M(mid,:)<t);
new_x = colfilt(x, 2*[r r]+1, 'sliding',fcn)
For r=1:
new_x =
0 0 0 0 0
0 0 9 9 0
0 4 9 9 0
0 8.3333 8 0 0
0 2 4 8 0
0 4 5 8 0
0 0 0 0 0
For r=2:
new_x =
0 0 0 0 0
0 0 11.2 9 0
0 4 9 10.167 0
0 7 7.7778 0 0
0 2 4 8 0
0 4 5 8 0
0 0 0 0 0
In fact, it should work for any radius >= 1
Notice how the diamond shape structuring element represents the neighborhood:
nhood =
0 1 0
1 0 1
0 1 0
nhood =
0 0 1 0 0
0 1 1 1 0
1 1 0 1 1
0 1 1 1 0
0 0 1 0 0
and so on..
Explanation:
We use the COLFILT function which traverse the matrix using a sliding neighborhood of NxN, and places each block as a column in a temporary matrix.
We process each column of this temp matrix (blocks) using the function fcn
, and the result will be placed in the correct location once finished (COLFILT uses IM2COL and COL2IM underneath).
We check for two cases depending of the value of the center of the block:
If its less than 10, it returns that value unchanged: M(mid,:)
if its >=10, we compute the mean of the non-zero elements of its neighborhood
sum(M(nhood(:),:),1) ./ (sum(M(nhood(:),:)~=0) + all(M(nhood(:),:)==0))
.
The last term in there is necessary to avoid dividing by zero
Notice how the result of 1 & 2 above are combined using R1.*(M(mid,:)<t) + R2.*(M(mid,:)>=t)
to emulate an if/else choice.
Here is the algorithm I think you are describing in your question. For each pixel:
If this is correct (as it appears to be from the sample matrices you gave), then you could use the function NLFILTER from the Image Processing Toolbox (if you have access to it) to perform this operation:
fcn = @(x) [x(5) sum(x(2:2:8))/max(sum(x(2:2:8) > 0),1)]*[x(5) < 10; x(5) >= 10];
new_x = nlfilter(X,[3 3],fcn);
EDIT: If you don't have access to the Image Processing Toolbox, you can also do this using the built-in CONV2 function, like so:
kernel = [0 1 0; ... %# Convolution kernel
1 0 1; ...
0 1 0];
sumX = conv2(X,kernel,'same'); %# Compute the sum of neighbors
%# for each pixel
nX = conv2(double(X > 0),kernel,'same'); %# Compute the number of non-zero
%# neighbors for each pixel
index = (X >= 10); %# Find logical index of pixels >= 10
new_x = X; %# Initialize new_x
new_x(index) = sumX(index)./max(nX(index),1); %# Replace the pixels in index
%# with the average of their
%# non-zero neighbors
The above handles your radius = 1 case. To address your radius = 2 case, you just have to change the convolution kernel to the following and rerun the above code:
kernel = [0 0 1 0 0; ...
0 1 1 1 0; ...
1 1 0 1 1; ...
0 1 1 1 0; ...
0 0 1 0 0];
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With