How do I reuse variables in TensorFlow? I want to reuse the tf.contrib.layers.linear
with tf.variable_scope("root") as varscope:
inputs_1 = tf.constant(0.5, shape=[2, 3, 4])
inputs_2 = tf.constant(0.5, shape=[2, 3, 4])
outputs_1 = tf.contrib.layers.linear(inputs_1, 5)
varscope.reuse_variables()
outputs_2 = tf.contrib.layers.linear(inputs_2, 5)
But it gives me the following result
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-51-a40b9ec68e25> in <module>()
5 outputs_1 = tf.contrib.layers.linear(inputs_1, 5)
6 varscope.reuse_variables()
----> 7 outputs_2 = tf.contrib.layers.linear(inputs_2, 5)
...
ValueError: Variable root/fully_connected_1/weights does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope?
Variable scope allows you to create new variables and to share already created ones while providing checks to not create or share by accident. For details, see the Variable Scope How To, here we present only a few basic examples. The Variable Scope works as expected when the Eager Execution is Disabled.
The function tf. get_variable() returns the existing variable with the same name if it exists, and creates the variable with the specified shape and initializer if it does not exist.
The problem is tf.contrib.layers.linear automatically creates a new set of linear layers with its own scope. When calling scope.reuse() there's nothing to be reused because those are new variables.
Try to do something like this instead
def function():
with tf.variable_scope("root") as varscope:
inputs = tf.constant(0.5, shape=[2, 3, 4])
outputs = tf.contrib.layers.linear(inputs, 5)
return outputs
result_1 = function()
tf.get_variable_scope().reuse_variables()
result_2 = function()
sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
a = sess.run(result_1)
b = sess.run(result_2)
np.all(a == b) # ==> True
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With