I installed Cuda-8.0 and Tensorflow GPU version on ubuntu 16.04. It was working fine initally and using GPU. But suddenly it has stopped using GPU. I installed tensorflow through pip and correctly the GPU version as it worked and used GPU initially.
The message I get while importing tensorflow is:
>>> import tensorflow as tf
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:126] Couldn't open CUDA library libcudnn.so.5. LD_LIBRARY_PATH: :/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/lib/x86_64-linux-gnu
I tensorflow/stream_executor/cuda/cuda_dnn.cc:3517] Unable to load cuDNN DSO
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcurand.so.8.0 locally
So clearly it's even able to locate cuda library from LD_LIBRARY_PATH. But when I get following output:
>>> sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
E tensorflow/stream_executor/cuda/cuda_driver.cc:509] failed call to cuInit: CUDA_ERROR_UNKNOWN
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:158] retrieving CUDA diagnostic information for host: naman-pc
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:165] hostname: naman-pc
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:189] libcuda reported version is: 375.39.0
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:363] driver version file contents: """NVRM version: NVIDIA UNIX x86_64 Kernel Module 375.39 Tue Jan 31 20:47:00 PST 2017
GCC version: gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.4)
"""
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:193] kernel reported version is: 375.39.0
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:300] kernel version seems to match DSO: 375.39.0
Device mapping: no known devices.
I tensorflow/core/common_runtime/direct_session.cc:257] Device mapping:
So it's not able to locate GPU. nvidia-smi gives following output:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.39 Driver Version: 375.39 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Graphics Device Off | 0000:01:00.0 On | N/A |
| 23% 41C P8 11W / 250W | 337MiB / 11169MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1005 G /usr/lib/xorg/Xorg 197MiB |
| 0 2032 G ...s-passed-by-fd --v8-snapshot-passed-by-fd 89MiB |
| 0 30355 G compiz 37MiB |
+-----------------------------------------------------------------------------+
I browsed other links on stackoverflow, but they mostly ask to check LD_LIBRARY_PATH or nvidia-smi. For me both are expected, so not able to understand the issue.
EDIT: I tried installing cudnn 5 and putting it in LD_LIBRARY_PATH also, tensorflow reads it successfully but still the same error on creating session.
Simply rename "cudnn64_6.dll" to "cudnn64_5.dll".
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With