at the moment I try to train a autoencoder on a custom image dataset using the new Estimator API of Tensorflow.
So far everything is working. The only problem I have is to save the input and output images as summary when the model is in evaluation mode. All image summaries I create in train mode are stored and shown in Tensorboard properly.
Here is my code:
def model_fn_autoencoder(features, labels, mode, params):
is_training = mode == ModeKeys.TRAIN
# Define model's architecture
logits = architecture_autoencoder(features, is_training=is_training)
# Loss, training and eval operations are not needed during inference.
loss = None
train_op = None
#eval_metric_ops = {}
if mode != ModeKeys.INFER:
loss = tf.reduce_mean(tf.square(logits - features))
train_op = get_train_op_fn(loss, params)
#eval_metric_ops = get_eval_metric_ops(labels, predictions)
if mode == ModeKeys.TRAIN:
for i in range(10):
tf.summary.image("Input/Train/" + str(i), tf.reshape(features[i],[1, 150, 150, 3]))
tf.summary.image("Output/Train/" + str(i), tf.reshape(logits[i],[1, 150, 150, 3]))
if mode == ModeKeys.EVAL:
for i in range(10):
tf.summary.image("Input/Eval/" + str(i), tf.reshape(features[i], [1, 150, 150, 3]))
tf.summary.image("Output/Eval/" + str(i), tf.reshape(logits[i], [1, 150, 150, 3]))
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=logits,
loss=loss,
train_op=train_op,
#eval_metric_ops=eval_metric_ops
Maybe someone can tell me what I'm doing wrong?
Update Here are the functions for the estimator and experiment creation:
Estimator:
def get_estimator(run_config, params):
return tf.estimator.Estimator(
model_fn=model_fn_autoencoder, # First-class function
params=params, # HParams
config=run_config # RunConfig
)
Experiment:
def experiment_fn(run_config, params):
run_config = run_config.replace(save_checkpoints_steps=params.min_eval_frequency)
estimator = get_estimator(run_config, params)
tf_path = 'path/to/tfrecord'
train_file = 'Crops-Faces-Negtives-150-150.tfrecord'
val_file = 'Crops-Faces-Negtives-150-150-TEST.tfrecord'
tfrecords_train = [os.path.join(tf_path, train_file)]
tfrecords_test = [os.path.join(tf_path, val_file)]
# Setup data loaders
train_input_fn = get_train_inputs(batch_size=128, tfrecord_files=tfrecords_train)
eval_input_fn = get_train_inputs(batch_size=128, tfrecord_files=tfrecords_test)
# Define the experiment
experiment = tf.contrib.learn.Experiment(
estimator=estimator, # Estimator
train_input_fn=train_input_fn, # First-class function
eval_input_fn=eval_input_fn, # First-class function
train_steps=params.train_steps, # Minibatch steps
min_eval_frequency=params.min_eval_frequency, # Eval frequency
eval_steps=10 # Number of eval batches
)
return experiment
With TF1.4, you can pass tf.estimator.EstimatorSpec evaluation_hooks. The evaluation_hooks is a list of hooks, and you must add to it the following hook:
# Create a SummarySaverHook
eval_summary_hook = tf.train.SummarySaverHook(
save_steps=1,
output_dir= self.job_dir + "/eval_core",
summary_op=tf.summary.merge_all())
# Add it to the evaluation_hook list
evaluation_hooks.append(eval_summary_hook)
#Now, return the estimator:
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
training_hooks=training_hooks,
eval_metric_ops=eval_metric_ops,
evaluation_hooks=evaluation_hooks)
Now you can simply add tf.summary.image and have it in Tensorboard. Make use you open Tensrobaord on a parent directory of the specified output directory you used in the eval_summary hook. In my example it was called 'eval_core', so I opened Tensorboard on its parent directory, and as you can see in the picture below, it is showing up nicely in a blue box.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With