Say I have a very small dataset, just 50 Images. I want to re-use the code from the tutorial at Red Pill, but apply random transformations to the same set of Images in each Batch of training, say random changes to Brightness, Contrast etc. I added just one function:
def preprocessImages(x):
retValue = numpy.empty_like(x)
for i in range(50):
image = x[i]
image = tf.reshape(image, [28,28,1])
image = tf.image.random_brightness(image, max_delta=63)
#image = tf.image.random_contrast(image, lower=0.2, upper=1.8)
# Subtract off the mean and divide by the variance of the pixels.
float_image = tf.image.per_image_whitening(image)
float_image_Mat = sess.run(float_image)
retValue[i] = float_image_Mat.reshape((28*28))
return retValue
Small change to the old code:
batch = mnist.train.next_batch(50)
for i in range(1000):
#batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:preprocessImages(batch[0]), y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: preprocessImages(batch[0]), y_: batch[1], keep_prob: 0.5})
First iteration is successful, thereafter it crashes:
step 0, training accuracy 0.02
W tensorflow/core/common_runtime/executor.cc:1027] 0x117e76c0 Compute status: Invalid argument: ReluGrad input is not finite. : Tensor had NaN values
[[Node: gradients_4/Relu_12_grad/Relu_12/CheckNumerics = CheckNumerics[T=DT_FLOAT, message="ReluGrad input is not finite.", _device="/job:localhost/replica:0/task:0/cpu:0"](add_16)]]
W tensorflow/core/common_runtime/executor.cc:1027] 0x117e76c0 Compute status: Invalid argument: ReluGrad input is not finite. : Tensor had NaN values
[[Node: gradients_4/Relu_13_grad/Relu_13/CheckNumerics = CheckNumerics[T=DT_FLOAT, message="ReluGrad input is not finite.", _device="/job:localhost/replica:0/task:0/cpu:0"](add_17)]]
W tensorflow/core/common_runtime/executor.cc:1027] 0x117e76c0 Compute status: Invalid argument: ReluGrad input is not finite. : Tensor had NaN values
[[Node: gradients_4/Relu_14_grad/Relu_14/CheckNumerics = CheckNumerics[T=DT_FLOAT, message="ReluGrad input is not finite.", _device="/job:localhost/replica:0/task:0/cpu:0"](add_18)]]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/media/sf_Data/mnistConv.py", line 69, in <module>
train_step.run(feed_dict={x: preprocessImages(batch[0]), y_: batch[1], keep_prob: 0.5})
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1267, in run
_run_using_default_session(self, feed_dict, self.graph, session)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2763, in _run_using_default_session
session.run(operation, feed_dict)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 345, in run
results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 419, in _do_run
e.code)
tensorflow.python.framework.errors.InvalidArgumentError: ReluGrad input is not finite. : Tensor had NaN values
[[Node: gradients_4/Relu_12_grad/Relu_12/CheckNumerics = CheckNumerics[T=DT_FLOAT, message="ReluGrad input is not finite.", _device="/job:localhost/replica:0/task:0/cpu:0"](add_16)]]
Caused by op u'gradients_4/Relu_12_grad/Relu_12/CheckNumerics', defined at:
File "<stdin>", line 1, in <module>
File "/media/sf_Data/mnistConv.py", line 58, in <module>
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/optimizer.py", line 165, in minimize
gate_gradients=gate_gradients)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/optimizer.py", line 205, in compute_gradients
loss, var_list, gate_gradients=(gate_gradients == Optimizer.GATE_OP))
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gradients.py", line 414, in gradients
in_grads = _AsList(grad_fn(op_wrapper, *out_grads))
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/nn_grad.py", line 107, in _ReluGrad
t = _VerifyTensor(op.inputs[0], op.name, "ReluGrad input is not finite.")
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/nn_grad.py", line 100, in _VerifyTensor
verify_input = array_ops.check_numerics(t, message=msg)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_array_ops.py", line 48, in check_numerics
name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/op_def_library.py", line 633, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1710, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 988, in __init__
self._traceback = _extract_stack()
...which was originally created as op u'Relu_12', defined at:
File "<stdin>", line 1, in <module>
File "/media/sf_Data/mnistConv.py", line 34, in <module>
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 506, in relu
return _op_def_lib.apply_op("Relu", features=features, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/op_def_library.py", line 633, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1710, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 988, in __init__
self._traceback = _extract_stack()
This is exactly the same error that I get with my personal dataset with 50 training examples.
One thing to start with: Instead of computing y_conv and then the cross-entropy, use the merged tf.softmax_cross_entropy_with_logits
operator. This may not solve your problem, but it's more numerically stable than the naive version in the Red Pill example.
Second, try printing out the cross_entropy at every iteration.
cross_entropy = .... (previous code here)
cross_entropy = tf.Print(cross_entropy, [cross_entropy], "Cross-entropy: ")
to get an idea if it's going to infinity as the model progresses, or if it just jumps to inf or NaN. If it progressively blows up, then it's probably the learning rate. If it jumps, it could be a numerical boundary condition that could be solved as above. If it's there from the get-go, you may have an error in the way you're applying distortions that ends up feeding in horribly broken data in some way.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With