I am using TensorFlow 2.0 and Python 3.8 and I want to use a learning rate scheduler for which I have a function. I have to train a neural network for 160 epochs with the following where the learning rate is to be decreased by a factor of 10 at 80 and 120 epochs, where the initial learning rate = 0.01.
def scheduler(epoch, current_learning_rate):
if epoch == 79 or epoch == 119:
return current_learning_rate / 10
else:
return min(current_learning_rate, 0.001)
How can I use this learning rate scheduler function with 'tf.GradientTape()'? I know how to use this using "model.fit()" as a callback:
callback = tf.keras.callbacks.LearningRateScheduler(scheduler)
How do I use this while using custom training loops with "tf.GradientTape()"?
Thanks!
The learning rate for different epochs can be set using lr attribute of tensorflow keras optimizer. lr attribute of the optimizer still exists since tensorflow 2 has backward compatibility for keras (For more details refer the source code here). Below is a small snippet of how the learning rate can be varied across different epochs. self._train_step is similar to the train_step function defined here.
def set_learning_rate(epoch):
if epoch > 180:
optimizer.lr = 0.5e-6
elif epoch > 160:
optimizer.lr = 1e-6
elif epoch > 120:
optimizer.lr = 1e-5
elif epoch > 3:
optimizer.lr = 1e-4
def train(epochs, train_data, val_data):
prev_val_loss = float('inf')
for epoch in range(epochs):
self.set_learning_rate(epoch)
for images, labels in train_data:
self._train_step(images, labels)
for images, labels in val_data:
self._test_step(images, labels)
Another alternative would be to use tf.keras.optimizers.schedules
learning_rate_fn = keras.optimizers.schedules.PiecewiseConstantDecay(
[80*num_steps, 120*num_steps, 160*num_steps, 180*num_steps],
[1e-3, 1e-4, 1e-5, 1e-6, 5e-6]
)
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate_fn)
Note that here one cant directly provide the epochs, instead the number of steps have to be given, where each step is len(train_data)/batch_size.
A learning rate schedule needs a step value that can not be specified when using GradientTape followed by optimizer.apply_gradient().
So you should not pass directly the schedule as the learning_rate of the optimizer.
Instead, you can first call the schedule function to get the value for current step and then update the learning rate value in the optimizer:
optim = tf.keras.optimizers.SGD()
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(1e-2,1000,.9)
for step in range(0,1000):
lr = lr_schedule(step)
optim.learning_rate = lr
with GradientTape() as tape:
call func to differentiate
optim.apply_gradient(func,...)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With