Suppose i have a box with a lot of points. I need to be able to calculate min and max angles for all lines which go through all possible pairs of the points. I can do it in O(n^2) times by just enumerating every point with all others. But is there faster algorithm?

Taking the idea of dual plane proposed by Evgeny Kluev, and my comment about finding left-most intersection point, I'll try to give an equivalent direct solution without any dual space.
The solution is simple: sort your points by (x, y) lexicographically. Now draw a line through each two adjacent points in the sorted order. It can be proved that the minimal angle is achieved by one of these lines. In order to get maximal angle, you need to sort by (x, -y) lexicographically, and also check only adjacent pairs of points.
Let's prove by the idea for min angle. Consider the two points A and B which yield the minimal possible angle. Among such points we can choose the pair with minimal difference of x coordinates.
Suppose that they have same y. If there is no other point between them, then they are adjacent. If there are any points between them, then clearly at least one of them is adjacent to A in our order, and all of them yield the same angle.
Suppose that there exists a point P with x-coordinate in between A and B, i.e. Ax < Px < Bx. If P lies on AB, then AP has same angle but less difference of x coordinates, hence a contradiction. When P is not on AB, then either AP or PB would give you less angle, which also gives contradiction.
Now we have points A and B lying on two adjacent vertical lines. There are no other points between these lines. If A and B are the only points on their vertical lines, then the AB pair is clearly adjacent in sorted order and QED. If there many points on these lines, obviously the minimal angle is achieved by taking the highest point on the left vertical line (which must be A) and the lowest point on the right vertical line (which must be B). Since we sort points of equal x by y, these two points are also adjacent.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With