The Following code gives a dataframe having three values in each column as shown below.
import org.graphframes._
import org.apache.spark.sql.DataFrame
val v = sqlContext.createDataFrame(List(
("1", "Al"),
("2", "B"),
("3", "C"),
("4", "D"),
("5", "E")
)).toDF("id", "name")
val e = sqlContext.createDataFrame(List(
("1", "3", 5),
("1", "2", 8),
("2", "3", 6),
("2", "4", 7),
("2", "1", 8),
("3", "1", 5),
("3", "2", 6),
("4", "2", 7),
("4", "5", 8),
("5", "4", 8)
)).toDF("src", "dst", "property")
val g = GraphFrame(v, e)
val paths: DataFrame = g.bfs.fromExpr("id = '1'").toExpr("id = '5'").run()
paths.show()
val df=paths
df.select(df.columns.filter(_.startsWith("e")).map(df(_)) : _*).show
OutPut of Above Code is given below::
+-------+-------+-------+
| e0| e1| e2|
+-------+-------+-------+
|[1,2,8]|[2,4,7]|[4,5,8]|
+-------+-------+-------+
In the above output, we can see that each column has three values and they can be interpreted as follows.
e0 :
source 1, Destination 2 and distance 8
e1:
source 2, Destination 4 and distance 7
e2:
source 4, Destination 5 and distance 8
basically e0
,e1
, and e3
are the edges. I want to sum the third element of each column, i.e add the distance of each edge to get the total distance. How can I achieve this?
It can be done like this:
val total = df.columns.filter(_.startsWith("e"))
.map(c => col(s"$c.property")) // or col(c).getItem("property")
.reduce(_ + _)
df.withColumn("total", total)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With