I have a data frame with some NA values. I need the sum of two of the columns. If a value is NA, I need to treat it as zero.
a b c d
1 2 3 4
5 NA 7 8
Column e should be the sum of b and c:
e
5
7
I have tried a lot of things, and done two dozen searches with no luck. It seems like a simple problem. Any help would be appreciated!
To find the sum of non-missing values in an R data frame column, we can simply use sum function and set the na. rm to TRUE. For example, if we have a data frame called df that contains a column say x which has some missing values then the sum of the non-missing values can be found by using the command sum(df$x,na.
Pandas: Sum values in two different columns using loc[] as assign as a new column. We selected the columns 'Jan' & 'Feb' using loc[] and got a mini dataframe which contains only these two columns. Then called the sum() with axis=1, which added the values in all the columns and returned a Series object.
There is a formula can help you quickly sum up the column ignore #N/A. Select a blank cell, C3 for instance, and type this formula =SUMIF(A1:A14,"<>#N/A"), press Enter key to get the result.
dat$e <- rowSums(dat[,c("b", "c")], na.rm=TRUE)
dat
# a b c d e
# 1 1 2 3 4 5
# 2 5 NA 7 8 7
dplyr
solution, taken from here:
library(dplyr)
dat %>%
rowwise() %>%
mutate(e = sum(b, c, na.rm = TRUE))
Here is another solution, with concatenated ifelse()
:
dat$e <- ifelse(is.na(dat$b) & is.na(dat$c), dat$e <-0, ifelse(is.na(dat$b), dat$e <- 0 + dat$c, dat$b + dat$c))
# a b c d e
#1 1 2 3 4 5
#2 5 NA 7 8 7
Edit, here is another solution that uses with
as suggested by @kasterma in the comments, this is much more readable and straightforward:
dat$e <- with(dat, ifelse(is.na(b) & is.na(c ), 0, ifelse(is.na(b), 0 + c, b + c)))
I hope that it may help you
Some cases you have a few columns that are not numeric. This approach will serve you both. Note that: c_across() for dplyr version 1.0.0 and later
df <- data.frame(
TEXT = c("text1", "text2"), a = c(1,5), b = c(2, NA), c = c(3,7), d = c(4,8))
df2 <- df %>%
rowwise() %>%
mutate(e = sum(c_across(a:d), na.rm = TRUE))
# A tibble: 2 x 6
# Rowwise:
# TEXT a b c d e
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 text1 1 2 3 4 10
# 2 text2 5 NA 7 8 20
if you want to keep NA if both columns has it you can use:
Data, sample:
dt <- data.table(x = sample(c(NA, 1, 2, 3), 100, replace = T), y = sample(c(NA, 1, 2, 3), 100, replace = T))
Solution:
dt[, z := ifelse(is.na(x) & is.na(y), NA_real_, rowSums(.SD, na.rm = T)), .SDcols = c("x", "y")]
(the data.table way)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With