I'm given a set of the following data:
week A B C D E
1 243 857 393 621 194
2 644 576 534 792 207
3 946 252 453 547 436
4 560 100 864 663 949
5 712 734 308 385 303
I’m asked to find the sum of each column for specified rows/a specified number of weeks, and then plot those numbers onto a bar chart to compare A-E.
Assuming I have the rows I need (e.g. df.iloc[2:4,:]
), what should I do next? My assumption is that I need to create a mask with a single row that includes the sum of each column, but I'm not sure how I go about doing that.
I know how to do the final step (i.e. .plot(kind='bar'
), I just need to know what the middle step is to obtain the sums I need.
You can use for select by positions iloc
, sum
and Series.plot.bar
:
df.iloc[2:4].sum().plot.bar()
Or if want select by names of index (here weeks) use loc
:
df.loc[2:4].sum().plot.bar()
Difference is iloc
exclude last position:
print (df.loc[2:4])
A B C D E
week
2 644 576 534 792 207
3 946 252 453 547 436
4 560 100 864 663 949
print (df.iloc[2:4])
A B C D E
week
3 946 252 453 547 436
4 560 100 864 663 949
And if need also filter columns by positions:
df.iloc[2:4, :4].sum().plot.bar()
And by names (weeks):
df.loc[2:4, list('ABCD')].sum().plot.bar()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With