Given an array say nums = { 1,2,5,3,6,-1,-2,10,11,12}, using max no of elements (say maxNums=3) find the elements whose sum (say sum =10) = K
so if maxNums to be used = 3 sum to find = 10 the the answer is
{1 3 6}
{1 -1 10}
{1 -2 11}
{2 5 3}
{2 -2 10}
{5 6 -1}
{-1 11}
{-2 12}
{10}
I wrote a recursive function which does the job. How do I do it without recursion? and/or with less memory ?
class Program
{
static Int32[] nums = { 1,2,5,3,6,-1,-2,10,11,12};
static Int32 sum = 10;
static Int32 maxNums = 3;
static void Main(string[] args)
{
Int32[] arr = new Int32[nums.Length];
CurrentSum(0, 0, 0, arr);
Console.ReadLine();
}
public static void Print(Int32[] arr)
{
for (Int32 i = 0; i < arr.Length; i++)
{
if (arr[i] != 0)
Console.Write(" " +arr[i]);
}
Console.WriteLine();
}
public static void CurrentSum(Int32 sumSoFar, Int32 numsUsed, Int32 startIndex, Int32[] selectedNums)
{
if ( startIndex >= nums.Length || numsUsed > maxNums)
{
if (sumSoFar == sum && numsUsed <= maxNums)
{
Print(selectedNums);
}
return;
}
**//Include the next number and check the sum**
selectedNums[startIndex] = nums[startIndex];
CurrentSum(sumSoFar + nums[startIndex], numsUsed+1, startIndex+1, selectedNums);
**//Dont include the next number**
selectedNums[startIndex] = 0;
CurrentSum(sumSoFar , numsUsed , startIndex + 1, selectedNums);
}
}
You function looks fine but possible a bit optimize:
class Program
{
static Int32[] nums = { 1, 2, 5, 3, 6, -1, -2, 10, 11, 12 };
static Int32 sum = 10;
static Int32 maxNums = 3;
static Int32[] selectedNums = new Int32[maxNums];
static void Main(string[] args)
{
CurrentSum(0, 0, 0);
Console.ReadLine();
}
public static void Print(int count)
{
for (Int32 i = 0; i < count; i++)
{
Console.Write(" " + selectedNums[i]);
}
Console.WriteLine();
}
public static void CurrentSum(Int32 sumSoFar, Int32 numsUsed, Int32 startIndex)
{
if (sumSoFar == sum && numsUsed <= maxNums)
{
Print(numsUsed);
}
if (numsUsed >= maxNums || startIndex >= nums.Length)
return;
for (int i = startIndex; i < nums.Length; i++)
{
// Include i'th number
selectedNums[numsUsed] = nums[i];
CurrentSum(sumSoFar + nums[i], numsUsed + 1, i + 1);
}
}
}
Also I fixed a bug in your function. It fails on following testcase:
{10, 2, -2}
Sum = 10
K = 3
Your functions returns only {10}
instead of {10} and {10, 2, -2}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With