In the igraph
R package, is there an efficient implementation of subcomponent()
and/or BFS that can handle multiple source vertices?
The drake
R package models a user's workflow as a DAG of interdependent objects and files. The DAG should only contain the user's targets and their upstream dependencies, so drake
uses igraph::subcomponent()
to eliminate superfluous vertices. This approach is inefficient because the v
argument must be a single vertex, so drake
ends up conducting a new BFS for every single target the user wants to build.
drake
now uses a different approach that ultimately relies on sequential calls to adjacent_vertices()
. The approach is clunky, but the speed improvement is actually quite nice. Still holding out for something more elegant and sophisticated.
I think you can do this using the distances()
function which generates a matrix of distances (no of edges) between nodes. This seems to do the search once and is a good deal faster than iterating through each vertex.
Example code:
library(igraph)
library(microbenchmark)
# generate some random testing data
set.seed(1234)
g <- erdos.renyi.game(50, .01)
# Here we make a function that iterates
# across the vector of IDs applying the function
# and returns a list where each element is the
# ids of the subcomponents
sc_apply <- function(g) {
vs <- V(g)
res <- sapply(vs, function(v){as.numeric( # to facilitate comparison
subcomponent(g, v, mode = "in")
)})
res
}
# Try it for testing
t1 <- sc_apply(g)
# Here we get the matrix of node distances. Infinite distance
# implies a seperate component. We iterate through rows of
# matrix to extract the set of nodes that are connected
sc_distmat <- function(g) {
dmat <- distances(g, mode = "in")
res <- apply(dmat, 1, function(row){which(is.finite(row))})
res
}
# extract for testing
t2 <- sc_distmat(g)
# check that equal (we need to sort the
# subcomponent list elements first to facilitate comparison)
all.equal(lapply(t1, sort), t2)
#> [1] TRUE
The results are identical -- although worth noting that if your graph is one giant component than apply will return a matrix to you instead of a list so you will need to do your comparisons in a slightly different way.
Ok now lets see how much/whether this is faster:
# generate graphs of different sizes (not too big because my
# laptop is borderline antique!)
set.seed(42)
small_g <- erdos.renyi.game(10, .2)
mid_g <- erdos.renyi.game(50, .1)
big_g <- erdos.renyi.game(100, .1)
# check speed improvement
microbenchmark(sc_apply(small_g), sc_distmat(small_g))
#> Unit: microseconds
#> expr min lq mean median uq
#> sc_apply(small_g) 2181.465 2243.4895 2734.7132 2313.005 2777.7135
#> sc_distmat(small_g) 451.333 471.8565 840.4742 521.865 598.0845
#> max neval cld
#> 9152.262 100 b
#> 27139.262 100 a
microbenchmark(sc_apply(mid_g), sc_distmat(mid_g))
#> Unit: microseconds
#> expr min lq mean median uq
#> sc_apply(mid_g) 11006.113 11327.794 13590.9536 12919.492 15397.2510
#> sc_distmat(mid_g) 757.752 795.308 949.2551 841.834 965.4545
#> max neval cld
#> 27068.296 100 b
#> 2061.824 100 a
microbenchmark(sc_apply(big_g), sc_distmat(big_g))
#> Unit: milliseconds
#> expr min lq mean median uq
#> sc_apply(big_g) 23.11678 26.696373 29.940675 29.191045 33.012796
#> sc_distmat(big_g) 1.67531 1.727873 2.156307 1.855994 2.244872
#> max neval cld
#> 47.081647 100 b
#> 7.576123 100 a
As you can see the distances()
approach is faster, and increasingly faster as the size of the graph grows.
Created on 2019-01-10 by the reprex package (v0.2.1)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With