When I create a simple Keras Model
model = Sequential()
model.add(Dense(10, activation='tanh', input_dim=1))
model.add(Dense(1, activation='linear'))
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mean_squared_error'])
and do a callback to Tensorboard
tensorboard = TensorBoard(log_dir='c:/temp/tensorboard/run1', histogram_freq=1, write_graph=True, write_images=False)
model.fit(x, y, epochs=1000, batch_size=1, callbacks=[tensorboard])
The output in Tensorboard looks like this:
In other words, it's a complete mess.
You can create a name scope to group layers in your model using with K.name_scope('name_scope')
.
Example:
with K.name_scope('CustomLayer'):
# add first layer in new scope
x = GlobalAveragePooling2D()(x)
# add a second fully connected layer
x = Dense(1024, activation='relu')(x)
Thanks to https://github.com/fchollet/keras/pull/4233#issuecomment-316954784
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With