I am working on my first major data science project. I am attempting to match names between a large list of data from one source, to a cleansed dictionary in another. I am using this string matching blog as a guide.
I am attempting to use two different data sets. Unfortunately, I can't seem to get good results and I think I am not applying this appropriately.
Code:
import pandas as pd, numpy as np, re, sparse_dot_topn.sparse_dot_topn as ct
from sklearn.feature_extraction.text import TfidfVectorizer
from scipy.sparse import csr_matrix
df_dirty = {"name":["gogle","bing","amazn","facebook","fcbook","abbasasdfzz","zsdfzl","gogle","bing","amazn","facebook","fcbook","abbasasdfzz","zsdfzl"]}
df_clean = {"name":["google","bing","amazon","facebook"]}
print (df_dirty["name"])
print (df_clean["name"])
def ngrams(string, n=3):
string = (re.sub(r'[,-./]|\sBD',r'', string)).upper()
ngrams = zip(*[string[i:] for i in range(n)])
return [''.join(ngram) for ngram in ngrams]
def awesome_cossim_top(A, B, ntop, lower_bound=0):
# force A and B as a CSR matrix.
# If they have already been CSR, there is no overhead
A = A.tocsr()
B = B.tocsr()
M, _ = A.shape
_, N = B.shape
idx_dtype = np.int32
nnz_max = M * ntop
indptr = np.zeros(M + 1, dtype=idx_dtype)
indices = np.zeros(nnz_max, dtype=idx_dtype)
data = np.zeros(nnz_max, dtype=A.dtype)
ct.sparse_dot_topn(
M, N, np.asarray(A.indptr, dtype=idx_dtype),
np.asarray(A.indices, dtype=idx_dtype),
A.data,
np.asarray(B.indptr, dtype=idx_dtype),
np.asarray(B.indices, dtype=idx_dtype),
B.data,
ntop,
lower_bound,
indptr, indices, data)
return csr_matrix((data, indices, indptr), shape=(M, N))
def get_matches_df(sparse_matrix, name_vector, top=5):
non_zeros = sparse_matrix.nonzero()
sparserows = non_zeros[0]
sparsecols = non_zeros[1]
if top:
print (top)
nr_matches = top
else:
print (sparsecols.size)
nr_matches = sparsecols.size
left_side = np.empty([nr_matches], dtype=object)
right_side = np.empty([nr_matches], dtype=object)
similairity = np.zeros(nr_matches)
for index in range(0, nr_matches):
left_side[index] = name_vector[sparserows[index]]
right_side[index] = name_vector[sparsecols[index]]
similairity[index] = sparse_matrix.data[index]
return pd.DataFrame({'left_side': left_side,
'right_side': right_side,
'similairity': similairity})
company_names = df_clean['name']
vectorizer = TfidfVectorizer(min_df=1, analyzer=ngrams)
tf_idf_matrix = vectorizer.fit_transform(company_names)
import time
t1 = time.time()
matches = awesome_cossim_top(tf_idf_matrix, tf_idf_matrix.transpose(), 4, 0.8)
t = time.time()-t1
print("SELFTIMED:", t)
matches_df = get_matches_df(matches, company_names, top=4)
matches_df = matches_df[matches_df['similairity'] < 0.99999] # Remove all exact matches
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
print(matches_df)
The expected result is as follows:
You can import awesome_cossim_top function directly from the sparse_dot_topn lib.
Change the function get_matches_df with this:
def get_matches_df(sparse_matrix, A, B, top=100):
non_zeros = sparse_matrix.nonzero()
sparserows = non_zeros[0]
sparsecols = non_zeros[1]
if top:
nr_matches = top
else:
nr_matches = sparsecols.size
left_side = np.empty([nr_matches], dtype=object)
right_side = np.empty([nr_matches], dtype=object)
similairity = np.zeros(nr_matches)
for index in range(0, nr_matches):
left_side[index] = A[sparserows[index]]
right_side[index] = B[sparsecols[index]]
similairity[index] = sparse_matrix.data[index]
return pd.DataFrame({'left_side': left_side,
'right_side': right_side,
'similairity': similairity})
Now you can execute your code as below:
df_dirty = {"name":["gogle","bing","amazn","facebook","fcbook","abbasasdfzz","zsdfzl"]}
df_clean = {"name":["google","bing","amazon","facebook"]}
print (df_dirty["name"])
print (df_clean["name"])
vectorizer = TfidfVectorizer(min_df=1, analyzer=ngrams)
tf_idf_matrix_clean = vectorizer.fit_transform(df_clean['name'])
tf_idf_matrix_dirty = vectorizer.transform(df_dirty['name'])
t1 = time.time()
matches = awesome_cossim_top(tf_idf_matrix_dirty, tf_idf_matrix_clean.transpose(), 1, 0)
t = time.time()-t1
print("SELFTIMED:", t)
matches_df = get_matches_df(matches, df_dirty['name'], df_clean['name'], top=0)
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
print(matches_df)
Basically the example you found identifies duplicates in its own array and you want to use 2 sources instead of one.
Hope it helps!
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With