I have a huge training CSV file (709M) and a large testing CSV file (125M) that I want to send into a DNNClassifier
in the context of using the high-level Tensorflow API.
It appears that the input_fn
param accepted by fit
and evaluate
must hold all feature and label data in memory, but I currently would like to run this on my local machine, and thus expect it to run out of memory rather quickly if I read these files into memory and then process them.
I skimmed the doc on streamed-reading of data, but the sample code for reading CSVs appears to be for the low-level Tensorflow API.
And - if you'll forgive a bit of whining - it seems overly-complex for the trivial use case of sending well-prepared files of training and test data into an Estimator
... although, perhaps that level of complexity is actually required for training and testing large volumes of data in Tensorflow?
In any case, I'd really appreciate an example of using that approach with the high-level API, if it's even possible, which I'm beginning to doubt.
After poking around, I did manage to find DNNClassifier#partial_fit
, and will attempt to use it for training.
Examples of how to use this method would save me some time, though hopefully I'll stumble into the correct usage in the next few hours.
However, there doesn't seem to be a corresponding DNNClassifier#partial_evaluate
... though I suspect that I could break-up the testing data into smaller pieces and run DNNClassifier#evaluate
successively on each batch, which might actually be a great way to do it since I could segment the testing data into cohorts, and thereby obtain per-cohort accuracy.
==== Update ====
Short version:
DomJack's recommendation should be the accepted answer.
However, my Mac's 16GB of RAM enough for it to hold the entire 709Mb training data set in memory without crashing. So, while I will use the DataSets feature when I eventually deploy the app, I'm not using it yet for local dev work.
Longer version:
I started by using the partial_fit
API as described above, but upon every use it emitted a warning.
So, I went to look at the source for the method here, and discovered that its complete implementation looks like this:
logging.warning('The current implementation of partial_fit is not optimized'
' for use in a loop. Consider using fit() instead.')
return self.fit(x=x, y=y, input_fn=input_fn, steps=steps,
batch_size=batch_size, monitors=monitors)
... which reminds me of this scene from Hitchhiker's Guide:
Arthur Dent: What happens if I press this button?
Ford Prefect: I wouldn't-
Arthur Dent: Oh.
Ford Prefect: What happened?
Arthur Dent: A sign lit up, saying 'Please do not press this button again'.
Which is to say: partial_fit
seems to exist for the sole purpose of telling you not to use it.
Furthermore, the model generated by using partial_fit
iteratively on training file chunks was much smaller than the one generated by using fit
on the whole training file, which strongly suggests that only the last partial_fit
training chunk actually "took".
A neural network can be applied to the classification problem. Given this example, determine the class. Tensorflow has an implementation for the neural network included, which we’ll use to on csv data (the iris dataset). The iris dataset is split in two files: the training set and the test set. The network has a training phase.
tf.distribute.Strategy is a TensorFlow API to distribute training across multiple GPUs, multiple machines, or TPUs. Using this API, you can distribute your existing models and training code with minimal code changes. tf.distribute.Strategy has been designed with these key goals in mind:
Tensorflow has an implementation for the neural network included, which we’ll use to on csv data (the iris dataset). The iris dataset is split in two files: the training set and the test set. The network has a training phase. After training is completed it can be used to predict. What does the iris dataset contain?
Easy switching between strategies. You can distribute training using tf.distribute.Strategy with a high-level API like Keras Model.fit, as well as custom training loops (and, in general, any computation using TensorFlow).
Check out the tf.data.Dataset
API. There are a number of ways to create a dataset. I'll outline four - but you'll only have to implement one.
I assume each row of your csv
files is n_features
float values followed by a single int
value.
tf.data.Dataset
Dataset.from_generator
The easiest way to get started is to wrap a native python generator. This can have performance issues, but may be fine for your purposes.
def read_csv(filename):
with open(filename, 'r') as f:
for line in f.readlines():
record = line.rstrip().split(',')
features = [float(n) for n in record[:-1]]
label = int(record[-1])
yield features, label
def get_dataset():
filename = 'my_train_dataset.csv'
generator = lambda: read_csv(filename)
return tf.data.Dataset.from_generator(
generator, (tf.float32, tf.int32), ((n_features,), ()))
This approach is highly versatile and allows you to test your generator function (read_csv
) independently of TensorFlow.
Supporting tensorflow versions 1.12+, tensorflow datasets is my new favourite way of creating datasets. It automatically serializes your data, collects statistics and makes other meta-data available to you via info
and builder
objects. It can also handle automatic downloading and extracting making collaboration simple.
import tensorflow_datasets as tfds
class MyCsvDatasetBuilder(tfds.core.GeneratorBasedBuilder):
VERSION = tfds.core.Version("0.0.1")
def _info(self):
return tfds.core.DatasetInfo(
builder=self,
description=(
"My dataset"),
features=tfds.features.FeaturesDict({
"features": tfds.features.Tensor(
shape=(FEATURE_SIZE,), dtype=tf.float32),
"label": tfds.features.ClassLabel(
names=CLASS_NAMES),
"index": tfds.features.Tensor(shape=(), dtype=tf.float32)
}),
supervised_keys=("features", "label"),
)
def _split_generators(self, dl_manager):
paths = dict(
train='/path/to/train.csv',
test='/path/to/test.csv',
)
# better yet, if the csv files were originally downloaded, use
# urls = dict(train=train_url, test=test_url)
# paths = dl_manager.download(urls)
return [
tfds.core.SplitGenerator(
name=tfds.Split.TRAIN,
num_shards=10,
gen_kwargs=dict(path=paths['train'])),
tfds.core.SplitGenerator(
name=tfds.Split.TEST,
num_shards=2,
gen_kwargs=dict(cvs_path=paths['test']))
]
def _generate_examples(self, csv_path):
with open(csv_path, 'r') as f:
for i, line in enumerate(f.readlines()):
record = line.rstrip().split(',')
features = [float(n) for n in record[:-1]]
label = int(record[-1])
yield dict(features=features, label=label, index=i)
Usage:
builder = MyCsvDatasetBuilder()
builder.download_and_prepare() # will only take time to run first time
# as_supervised makes output (features, label) - good for model.fit
datasets = builder.as_dataset(as_supervised=True)
train_ds = datasets['train']
test_ds = datasets['test']
One of the downsides of the above is shuffling the resulting dataset with a shuffle buffer of size n
requires n
examples to be loaded. This will either create periodic pauses in your pipeline (large n
) or result in potentially poor shuffling (small n
).
def get_record(i):
# load the ith record using standard python, return numpy arrays
return features, labels
def get_inputs(batch_size, is_training):
def tf_map_fn(index):
features, labels = tf.py_func(
get_record, (index,), (tf.float32, tf.int32), stateful=False)
features.set_shape((n_features,))
labels.set_shape(())
# do data augmentation here
return features, labels
epoch_size = get_epoch_size()
dataset = tf.data.Dataset.from_tensor_slices((tf.range(epoch_size,))
if is_training:
dataset = dataset.repeat().shuffle(epoch_size)
dataset = dataset.map(tf_map_fn, (tf.float32, tf.int32), num_parallel_calls=8)
dataset = dataset.batch(batch_size)
# prefetch data to CPU while GPU processes previous batch
dataset = dataset.prefetch(1)
# Also possible
# dataset = dataset.apply(
# tf.contrib.data.prefetch_to_device('/gpu:0'))
features, labels = dataset.make_one_shot_iterator().get_next()
return features, labels
In short, we create a dataset just of the record indices (or any small record ID which we can load entirely into memory). We then do shuffling/repeating operations on this minimal dataset, then map
the index to the actual data via tf.data.Dataset.map
and tf.py_func
. See the Using with Estimators
and Testing in isolation
sections below for usage. Note this requires your data to be accessible by row, so you may need to convert from csv
to some other format.
You can also read the csv
file directly using a tf.data.TextLineDataset
.
def get_record_defaults():
zf = tf.zeros(shape=(1,), dtype=tf.float32)
zi = tf.ones(shape=(1,), dtype=tf.int32)
return [zf]*n_features + [zi]
def parse_row(tf_string):
data = tf.decode_csv(
tf.expand_dims(tf_string, axis=0), get_record_defaults())
features = data[:-1]
features = tf.stack(features, axis=-1)
label = data[-1]
features = tf.squeeze(features, axis=0)
label = tf.squeeze(label, axis=0)
return features, label
def get_dataset():
dataset = tf.data.TextLineDataset(['data.csv'])
return dataset.map(parse_row, num_parallel_calls=8)
The parse_row
function is a little convoluted since tf.decode_csv
expects a batch. You can make it slightly simpler if you batch the dataset before parsing.
def parse_batch(tf_string):
data = tf.decode_csv(tf_string, get_record_defaults())
features = data[:-1]
labels = data[-1]
features = tf.stack(features, axis=-1)
return features, labels
def get_batched_dataset(batch_size):
dataset = tf.data.TextLineDataset(['data.csv'])
dataset = dataset.batch(batch_size)
dataset = dataset.map(parse_batch)
return dataset
Alternatively you can convert the csv
files to TFRecord files and use a TFRecordDataset. There's a thorough tutorial here.
Step 1: Convert the csv
data to TFRecords data. Example code below (see read_csv
from from_generator
example above).
with tf.python_io.TFRecordWriter("my_train_dataset.tfrecords") as writer:
for features, labels in read_csv('my_train_dataset.csv'):
example = tf.train.Example()
example.features.feature[
"features"].float_list.value.extend(features)
example.features.feature[
"label"].int64_list.value.append(label)
writer.write(example.SerializeToString())
This only needs to be run once.
Step 2: Write a dataset that decodes these record files.
def parse_function(example_proto):
features = {
'features': tf.FixedLenFeature((n_features,), tf.float32),
'label': tf.FixedLenFeature((), tf.int64)
}
parsed_features = tf.parse_single_example(example_proto, features)
return parsed_features['features'], parsed_features['label']
def get_dataset():
dataset = tf.data.TFRecordDataset(['data.tfrecords'])
dataset = dataset.map(parse_function)
return dataset
def get_inputs(batch_size, shuffle_size):
dataset = get_dataset() # one of the above implementations
dataset = dataset.shuffle(shuffle_size)
dataset = dataset.repeat() # repeat indefinitely
dataset = dataset.batch(batch_size)
# prefetch data to CPU while GPU processes previous batch
dataset = dataset.prefetch(1)
# Also possible
# dataset = dataset.apply(
# tf.contrib.data.prefetch_to_device('/gpu:0'))
features, label = dataset.make_one_shot_iterator().get_next()
estimator.train(lambda: get_inputs(32, 1000), max_steps=1e7)
I'd strongly encourage you to test your dataset independently of your estimator. Using the above get_inputs
, it should be as simple as
batch_size = 4
shuffle_size = 100
features, labels = get_inputs(batch_size, shuffle_size)
with tf.Session() as sess:
f_data, l_data = sess.run([features, labels])
print(f_data, l_data) # or some better visualization function
Assuming your using a GPU to run your network, unless each row of your csv
file is enormous and your network is tiny you probably won't notice a difference in performance. This is because the Estimator
implementation forces data loading/preprocessing to be performed on the CPU, and prefetch
means the next batch can be prepared on the CPU as the current batch is training on the GPU. The only exception to this is if you have a massive shuffle size on a dataset with a large amount of data per record, which will take some time to load in a number of examples initially before running anything through the GPU.
I agree with DomJack about using the Dataset
API, except the need to read the whole csv file and then convert to TfRecord
. I am hereby proposing to emply TextLineDataset
- a sub-class of the Dataset
API to directly load data into a TensorFlow program. An intuitive tutorial can be found here.
The code below is used for the MNIST classification problem for illustration and hopefully, answer the question of the OP. The csv file has 784 columns, and the number of classes is 10. The classifier I used in this example is a 1-hidden-layer neural network with 16 relu units.
Firstly, load libraries and define some constants:
# load libraries
import tensorflow as tf
import os
# some constants
n_x = 784
n_h = 16
n_y = 10
# path to the folder containing the train and test csv files
# You only need to change PATH, rest is platform independent
PATH = os.getcwd() + '/'
# create a list of feature names
feature_names = ['pixel' + str(i) for i in range(n_x)]
Secondly, we create an input function reading a file using the Dataset API, then provide the results to the Estimator API. The return value must be a two-element tuple organized as follows: the first element must be a dict in which each input feature is a key, and then a list of values for the training batch, and the second element is a list of labels for the training batch.
def my_input_fn(file_path, batch_size=32, buffer_size=256,\
perform_shuffle=False, repeat_count=1):
'''
Args:
- file_path: the path of the input file
- perform_shuffle: whether the data is shuffled or not
- repeat_count: The number of times to iterate over the records in the dataset.
For example, if we specify 1, then each record is read once.
If we specify None, iteration will continue forever.
Output is two-element tuple organized as follows:
- The first element must be a dict in which each input feature is a key,
and then a list of values for the training batch.
- The second element is a list of labels for the training batch.
'''
def decode_csv(line):
record_defaults = [[0.]]*n_x # n_x features
record_defaults.insert(0, [0]) # the first element is the label (int)
parsed_line = tf.decode_csv(records=line,\
record_defaults=record_defaults)
label = parsed_line[0] # First element is the label
del parsed_line[0] # Delete first element
features = parsed_line # Everything but first elements are the features
d = dict(zip(feature_names, features)), label
return d
dataset = (tf.data.TextLineDataset(file_path) # Read text file
.skip(1) # Skip header row
.map(decode_csv)) # Transform each elem by applying decode_csv fn
if perform_shuffle:
# Randomizes input using a window of 256 elements (read into memory)
dataset = dataset.shuffle(buffer_size=buffer_size)
dataset = dataset.repeat(repeat_count) # Repeats dataset this # times
dataset = dataset.batch(batch_size) # Batch size to use
iterator = dataset.make_one_shot_iterator()
batch_features, batch_labels = iterator.get_next()
return batch_features, batch_labels
Then, the mini-batch can be computed as
next_batch = my_input_fn(file_path=PATH+'train1.csv',\
batch_size=batch_size,\
perform_shuffle=True) # return 512 random elements
Next, we define the feature columns are numeric
feature_columns = [tf.feature_column.numeric_column(k) for k in feature_names]
Thirdly, we create an estimator DNNClassifier
:
classifier = tf.estimator.DNNClassifier(
feature_columns=feature_columns, # The input features to our model
hidden_units=[n_h], # One layer
n_classes=n_y,
model_dir=None)
Finally, the DNN is trained using the test csv file, while the evaluation is performed on the test file. Please change the repeat_count
and steps
to ensure that the training meets the required number of epochs in your code.
# train the DNN
classifier.train(
input_fn=lambda: my_input_fn(file_path=PATH+'train1.csv',\
perform_shuffle=True,\
repeat_count=1),\
steps=None)
# evaluate using the test csv file
evaluate_result = classifier.evaluate(
input_fn=lambda: my_input_fn(file_path=PATH+'test1.csv',\
perform_shuffle=False))
print("Evaluation results")
for key in evaluate_result:
print(" {}, was: {}".format(key, evaluate_result[key]))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With