Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Storing results of loop iterations in R

I am trying to store the results of the the code below, however I could only come up with a solution to save the results of the model with the smallest sum of squared residuals. This was useful until the results were in the limits of the range of both c and gamma, therefore I need to assess the characteristics of other points. For this I need to store the results of every iteration. Does anyone know how to do this in this case?

Thanks in advance!

dlpib1 <- info$dlpib1
scale <- sqrt(var(dlpib1))
RSS.m <- 10

for (c in seq(-0.03,0.05,0.001)){
  for (gamma in seq(1,100,0.2))
    {
    trans <- (1+exp(-(gamma/scale)*(dlpib1-c)))^-1
    grid.regre <-lm(dlpib ~ dlpib1 + dlpib8 + trans + trans*dlpib1 + 
                  + I(trans*dlpib4) ,data=info) 
coef <- grid.regre$coefficients
RSS <- sum(grid.regre$residuals^2)

if (RSS < RSS.m){
  RSS.m <- RSS
  gamma.m <- gamma
  c.m <- c
  coef.m <- coef
  }
 }
}
grid <- c(RSS=RSS.m,gamma=gamma.m,c=c.m,coef.m)
grid`
like image 640
Javier Avatar asked Sep 27 '13 18:09

Javier


People also ask

Is purrr faster than for loops?

The purrr library is an incredible tool to help make your code faster and more efficient by eliminating for loops and taking advantage of R's functional abilities.


1 Answers

The easiest way to store model results by iterations is in a list:

List = list()
for(i in 1:100)
    {
       LM = lm(rnorm(10)~rnorm(10))
       List[[length(List)+1]] = LM
     }
like image 100
Señor O Avatar answered Nov 14 '22 23:11

Señor O