I have a problem using a very complicated C function in a C++ class (rewriting the C function is not an option). C function:
typedef void (*integrand) (unsigned ndim, const double* x, void* fdata,
unsigned fdim, double* fval);
// This one:
int adapt_integrate(unsigned fdim, integrand f, void* fdata,
unsigned dim, const double* xmin, const double* xmax,
unsigned maxEval, double reqAbsError, double reqRelError,
double* val, double* err);
I need to supply a void function of type integrand
myself, and adapt_integrate will calculate the n-dimensional integral. The code in calcTripleIntegral
(below) works as a standalone function if func
is a standalone function).
I want to pass a (non-static!) class member function as the integrand, as this can be easily overloaded etc...
class myIntegrator
{
public:
double calcTripleIntegral( double x, double Q2, std::tr1::function<integrand> &func ) const
{
//...declare val, err, xMin, xMax and input(x,Q2) ...//
adapt_integrate( 1, func, input,
3, xMin, xMax,
0, 0, 1e-4,
&val, &err);
return val;
}
double integrandF2( unsigned ndim, const double *x, void *, // no matter what's inside
unsigned fdim, double *fval) const; // this qualifies as an integrand if it were not a class member
double getValue( double x, double Q2 ) const
{
std::tr1::function<integrand> func(std::tr1::bind(&myIntegrator::integrandF2, *this);
return calcTripleIntegral(x,Q2,func);
}
}
On GCC 4.4.5 (prerelease), this gives me:
error: variable 'std::tr1::function func' has initializer but incomplete type
EDIT:What is the error in my code? I have now tried compiling with GCC 4.4, 4.5 and 4.6, all resulting in the same error. Either no work has been done on this, or I did something wrong /EDIT
Thanks very much! If I'm not clear enough, I'll gladly elaborate.
PS: Could I work around this without tr1 stuff by using a function pointer to a function defined somewhere in myIntegrator.cpp?
FINAL UPDATE: ok, I was mistaken in thinking TR1 provided a one/two-line solution for this. Bummer. I'm "converting" my classes to namespaces and copypasting the function declarations. I only need one base class and one subclass which reimplemented the interface. C function pointer + C++ class = bad news for me. Thanks anyways for all the answers, you've shown me some dark corners of C++ ;)
If you are just trying to pass a member function into a c-style callback, you can do that with out using std::t1::bind
or std::tr1::function
.
class myIntegrator
{
public:
// getValue is no longer const. but integrandF2 wasn't changed
double getValue( double x, double Q2 )
{
m_x = x;
m_Q2 = Q2;
// these could be members if they need to change
const double xMin[3] = {0.0};
const double xMax[3] = {1.0,1.0,1.0};
const unsigned maxEval = 0;
double reqAbsError = 0.0;
double reqRelError = 1e-4;
double val;
adapt_integrate( 1, &myIntegrator::fancy_integrand,
reinterpret_cast<void*>(this),
3, xMin, xMax,
maxEval, reqAbsError, reqRelError,
&val, &m_err);
return val;
}
double get_error()
{ return m_error; }
private:
// use m_x and m_Q2 internally
// I removed the unused void* parameter
double integrandF2( unsigned ndim, const double *x,
unsigned fdim, double *fval) const;
static double fancy_integrand( unsigned ndim, const double* x, void* this_ptr,
unsigned fdim, double* fval)
{
myIntegrator& self = reinterpret_cast<myIntegrator*>(this_ptr);
self.integrateF2(ndim,x,fdim,fval);
}
double m_x
double m_Q2;
double m_err;
};
You have three problems... first you want a std::tr1::function<R (Args..)>
, but yours boils down to std::tr1::function<R (*)(Args...)>
- so you need two typedefs:
typedef void (integrand) (unsigned ndim, const double *x, void *,
unsigned fdim, double *fval);
typedef integrand* integrand_ptr;
... so the first allows you a compilable function<integrand>
. adapt_integrate
has to be fixed accordingly:
int adapt_integrate(unsigned fdim, integrand_ptr f, ...);
Next your bind
syntax is off, it should be:
std::tr1::bind(&myIntegrator::integrandF2, *this, _1, _2, _3, _4, _5);
The remaining problem is that tr1::function<T>
isn't convertible to a function pointer, so you would have to go through a wrapper function, using the void* fdata
argument to pass the context. E.g. something like:
extern "C" void integrand_helper (unsigned ndim, const double *x, void* data,
unsigned fdim, double *fval)
{
typedef std::tr1::function<integrand> Functor;
Functor& f = *static_cast<Functor*>(data);
f(ndim, x, data, fdim, fval);
}
// ...
adapt_integrate(1, &integrand_helper, &func, ...);
This is of course assuming that the void*
parameter is passed through to the function, if not it would get ugly.
On the other hand, if void* fdata
allows to pass context, all that tr1::function
stuff is unnecessary and you could just go directly through a trampoline function - just pass this
through as the context argument:
extern "C" void integrand_helper (unsigned ndim, const double *x, void* data,
unsigned fdim, double *fval)
{
static_cast<myIntegrator*>(data)->integrandF2(ndim, ...);
}
// ...
adapt_integrate(1, &integrand_helper, this, ...);
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With